两种全通道有效磁流变阻尼器的设计及性能分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
传统磁流变(MR)阻尼器活塞需缠绕励磁线圈,因此阻尼通道1/2以上长度为无效长度,影响阻尼器的最大出力。针对上述问题,提出了两种磁路结构改进方案,根据改进的磁路结构,结合磁场有限元分析,完成了两种阻尼器的结构设计和磁路设计,并采用Bingham平板模型对两种阻尼器出力状况进行预估,得到了阻尼器工作状态下的力-速度曲线,并比较了其性能。结果表明:改进的磁路结构切实可行,两种阻尼器与同尺寸传统MR阻尼器相比,提高了阻尼通道的有效长度,较好地实现了全通道有效,最大出力提高一倍以上;方案一阻尼器的阻尼力可调范围较大,方案二阻尼器在最大出力、防沉降性能和故障安全性能方面更具优势。
Magnetic coils ought to be winded around pistons of the conventional MR dampers,and hence,the above half of the damping path is ineffective,which affects the performance of MR dampers.In order to overcome this disadvantage,two improved magnetic circuit structures are proposed in this paper.Based on the structures of the proposed magnetic circuits and the finite element analysis of the magnetic fields,the structures and the improved magnetic circuits of MR damper are designed.The output powers of these two dampers in states are then predicted by Bingham model,from which the force-velocity hysteresis loops are also obtained.Finally,the performances of these two dampers are compared.The results show that the proposed magnetic circuits can realize the purpose of full-length effective damping path,thus the maximum damping forces of the new dampers are at least doubled compared with traditional MR damper of the same size.The MR damper using the first improved magnetic circuit has bigger adjustable extent of the damping force,while the MR damper with the second improved magnetic circuit has the advantages of larger maximum damping force,better ability to prevent MR fluid settling and better fail-safe ability.
引文
[1]Spencer B F,Dyke S J,Sain M K,et al.Phenomeno-logical model for magnetorheological damper[J].Journal of Engineering Mechanics-ASCE,1997,123(3):230—238.
    [2]Yang G,Spencer B F,Carlson J D,et al.Large-scaleMR fluid dampers:modeling,and dynamic perfor-mance considerations[J].Engineering Structures,2002,24(3):309—323.
    [3]Yang G.Large-scale magnetorheological fluid damperfor vibration mitigation:modeling,testing and control[D].Indiana:Ph.D Dissertation,University ofNotre Dame,2001.
    [4]欧进萍.结构振动控制—主动、半主动和智能控制[M].北京:科学出版社,2003.
    [5]瞿伟廉,樊友川.磁流变液阻尼器的磁路有限元分析与优化设计方法[J].华中科技大学学报,2006,23(3):1—4.
    [6]李忠献,吴林林,徐龙河,等.磁流变阻尼器的构造设计及其阻尼力性能的试验研究[J].地震工程与工程振动,2003,23(1):128—132.
    [7]Li Z X,Xu L H.Performance tests and hysteresismodel of MRF-04K damper[J].Journal of StructuralEngineering-ASCE,2005,131(8):1 303—1 306.
    [8]王亚曦,潘双夏,王维锐.磁流变液减震器中磁场强度的数学建模及有限元分析[J].设计与研究,2006,33(5):1—3.
    [9]张红辉,廖昌荣,陈伟民,等.磁流变阻尼器磁路设计及磁饱和有限元分析[J].功能材料与器件学报,2004,10(4):493—497.
    [10]吴恒颛.电机常用材料手册[M].西安:陕西科学技术出版社,2004.
    [11]李泉凤.电磁场数值计算与电磁铁设计[M].北京:清华大学出版社,2002.
    [12]欧进萍,关新春.磁流变耗能器及其性能[J].地震工程与工程振动,1998,18(3):74—81.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心