轻型木结构房屋足尺模型低周反复加载试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
通过9个轻型木结构房屋足尺模型(墙角无抗拔锚固件)和1个单片木框架剪力墙的低周反复加载试验,研究整体轻型木结构房屋中底层墙体的破坏模式及抗剪强度、位移、刚度、延性和耗能等力学性能指标。试验表明:在水平荷载作用下整体房屋中的墙体破坏主要发生在钉连接处,墙骨柱上拔较小,墙体的极限承载力约为设计值的2.6至3倍;整体结构中上部墙体和竖向荷载的共同作用虽能提高底层墙体的刚度,但同时也降低了其极限位移与屈服位移,使其耗能性能变差。单片墙体试验结果与整体结构中的墙体试验结果有较大区别,研究结果表明:房屋的整体作用不仅可以有效限制墙骨柱的上拔,还能提高墙体的极限承载力,并能使其更好地发挥抗震性能。建议在设计中考虑房屋的整体作用,减少抗拔锚固件的设置。
Nine full-scale light-framed wood construction specimens (without hold-downs) and a single piece of wood-framed shear wall were tested to study the failure mode, shear strength, deflection, stiffness, ductility and energy dissipation of the wall in the lowest storey of the structure. Results showed that the failure of the wall was mainly due to nail connection failure, while the uplift of the studs was small and the ultimate shear strength of the wall was about 2.6~3 times the design value. In a completed structure, the effects of upper walls and vertical loads on the performance of the wall were to: ① increase the stiffness, ② reduce the ultimate and yield deflection, and ③ make the energy dissipation performance of the wall worse. Comparison of the test results of the wall in the structure with those of a single piece of wall showed that seismic resistance performance of the former was better than that of latter, and the structural system effect not only can reduce the uplift of the studs but also improve the ultimate capacity of the wall. The complete structural system effect was suggested to be taken into consideration, so that the number of hold-downs used in the structure can be reduced.
引文
[1]GB50005—2003木结构设计规范[S].北京:中国建筑工业出版社,2006(GB50005—2003Code for design of timber structures[S].Beijing:China Architecture&Building Press,2006(in Chinese))
    [2]同济大学土木工程防灾国家重点实验室.两层轻型木结构房屋模拟地震振动台试验研究报告[R].上海:同济大学,2004
    [3]同济大学土木工程防灾国家重点实验室.二层不规则轻型木结构房屋模拟地震振动台试验研究报告[R].上海:同济大学,2005
    [4]熊海贝,倪春,吕西林,等.三层轻木-混凝土混合结构足尺模型模拟地震振动台试验研究[J].地震工程与工程振动,2008,28(1):91-98(Xiong Haibei,Ni Chun,Lu Xilin,et al.Shaking Table tests on3-storey wood-concrete hybrid structure[J].Earthquake Engineering and Engineering Vibration,2008,28(1):91-98(in Chinese))
    [5]Dolan J D,Heine C P.Sequential phased displacement cyclic test of wood-frame shear walls with corners[R].Washington,USA:The NAHB Research Center,1997
    [6]Dolan J D,Heine C P.Sequential phased displacementcyclic test of wood-frame shear walls with various opening and base restraint configuration[R].Washington,USA:The NAHB Research Center,1997
    [7]Ni Chun,Karacabeyli E.Capacity of shear wall segments without hold-downs[J].Wood Design Focus,2000,12(2):10-17
    [8]Dean P K,Shenton HW.Experimental investigation of the effect of vertical load on the capacity of wood shear walls[J].Journal of Structural Engineering,2005,131(7):1104-1113
    [9]Johnston AR,Dean P K,Shenton HW.Effects of vertical load and hold-down anchors on the cyclic response of wood framed shear walls[J].Journal of Structural Engineering,2006,132(9):1426-1434
    [10]程海江,倪春,吕西林.有翼缘和竖向荷载的带洞口木框架剪力墙的试验研究[J].土木工程学报,2006,39(12):33-40,47(Cheng Haijiang,Ni Chun,LXilin.Performance of perforated wood-frame shear walls with transverse walls and vertical load[J].China Civil Engineering Journal,2006,39(12):33-40,47(in Chinese))
    [11]Liu Yan,Ni Chun.Effect of upper storey/floor on the performance of wood shear walls[C]//Proceedings of9th World Conference on Timber Engineering.Portland,2006
    [12]CSA O86-01Engineering design in wood[S].Canada:Canadian Standard Association,2005
    [13]ISO16670Timber structure—joint made with mechanical fasteners—quasi-static reversed-cyclic test method[S].International Standard Organization,2003

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心