旋转剪切式MR阻尼器的性能试验与改进滞回模型
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于Bingham力学模型,设计、制作小尺寸旋转剪切式MR阻尼器,通过数字式特斯拉计测量励磁线圈的磁感应强度。设计了阻尼器试验装置,并对此MR阻尼器进行2种激励位移、11种输入电流和4种激励频率共88种工况的力学性能试验,根据MR阻尼力-速度滞回曲线,克服Bingham模型在零速度附近不能说明阻尼力-速度的关系,引入惯性力项方法,提出了改进滞回曲线非线性力学模型。采用智能粒子群算法辨识修正的滞回力学模型参数,通过阻尼器试验数据与修正滞回力学参数值进行对比,证明此滞回模型能很好地描述MR阻尼器强非线性的动力特性。
The parameters of the MR damper are designed based on the Bingham mechanical model.The magnetic induction of the coil is measured by the digital tesla meter and the rotary shear MR damper is manufactured,which maximum damping force is about to 1 N.The damping force performances of the MR damper is totally tested in 88 conditions,including of 2 kinds of excitation displacements,11 kinds of input current,and 4 kinds of excitation frequencies.Based on the force-velocity hysteretic curves of the MR damper,the problem that Bingham model fails to capture the hysteretic curve of MR damping force and velocity around zero velocity can be solved.The hysteretic model of RSMRD is calibrated with an improved hysteretic model with an additional inertial force,where each parameter is identified by intelligent particle swarm optimization.Compared the test data of the MR damper and the calculated data of the improved hysteretic model,the results show the hysteretic model can be feasible to describe strongly nonlinear dynamic behaviors of the MR damper.
引文
[1]Yang G Q.Large-scale magenetorheological fluiddamper for vibration mitigation:modeling,testingand control[D].Indiana:University of Notre Dame,2001.
    [2]欧进萍.结构振动控制—主动、半主动和智能控制[M].北京:科学出版社,2003.
    [3]关新春,李金海,欧进萍.足尺磁流变液耗能器的性能与试验研究[J].工程力学,2005,22(6):207—211.
    [4]瞿伟廉,秦顺全.武汉天兴洲公铁两用斜拉桥主梁和桥塔纵向列车制动响应智能控制的理论与关键技术[A].第五届全国电磁流液及其应用学术会议论文集[C].大连,2008,14:1—11.
    [5]陈政清.永磁调节装配式磁流变阻尼器[P].中国专利,ZL200510031108.8,2007-4-25.
    [6]丁阳,张路,姚宇飞,等.全通道有效磁流变阻尼器的性能测试与滞回模型[J].振动工程学报,2010,23(1):31—36.
    [7]邢海军,任杰,郭文武.磁流变减振器性能试验及分析[J].石家庄铁道学院学报,2002,15(3):33—35.
    [8]杨绍普,郭树起.磁流变智能材料的性质及其应用[A].第七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集[C].南京:2004,82—91.
    [9]Tse T,Chang C C.Shear-mode rotarymagnetorheological damper for small-scale structuralcontrol experiments[J].Journal of StructuralEngineering,ASCE,2004,130(6):904—911.
    [10]Lord Company.MRF-132DG Magneto-rheologicalFluid[R].Lord Technical Data,2008-8-7.
    [11]Stanway R,Sproston J L,Stevens N G.Non-linearmodeling of an electro-rheological vibration damper[J].Journal of Electrostatics,1987,20:167—184.
    [12]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(4):144—150.
    [13]Gamota D R,Filisko F E.Dynamic mechanicalstudies of electrorheological materials:moderatefrequencies[J].Journal of Rheology,1991,35:399—425.
    [14]Wen Y K.Method for random vibratiob of hystereticsystems[J].Journal of the Engineering MechanicsDivision,ASCE,1976,102(EM2):249—263.
    [15]Spencer B F,Dyke S J,Sain M K,et al.Phenomenological model for MR damper[J].Journalof Engineering Mechanics,ASCE,1997,123(3):230—238.
    [16]Kwok N M,Ha Q P,Nguyen T H,et al.A novelhysteretic model for magetorheological fluid dampersand parameter identification using particle swarmoptimization[J].Sensors and Actuators A,2006,132:441—451.
    [17]徐赵东,沈亚鹏.磁流变阻尼器的计算模型及仿真分析[J].建筑结构,2003,33(1):17—20.
    [18]Kennedy J,Eberhart R C.Particle swarmoptimization[A].In:Proc.IEEE Int'l Conf.onNeural networks[C].Piscataway,NJ,1995,IV:1942—1 948.
    [19]Shi Y,Eberhart R.A Modified Particle SwarmOptimizer[A].In:IEEE World Congress onComputational Intelligence[C].Anchorage,Alaska,1998:69—73.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心