疏浚淤泥流动固化土的压汞试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
采用压汞法对疏浚淤泥流动固化土进行了微观孔隙结构的研究,分析了固化土的孔隙体积及入口孔径分布特征与固化材料掺量及固化土龄期的关系,并将微观试验结果与固化土的物理指标和强度特性进行了比较。结果表明,采用压汞法研究疏浚淤泥流动固化土的微观孔隙空间分布是成功的,压汞试验得到的微观孔隙特征与众多学者通过宏观力学试验得出的强度规律是一致的,微观结构试验能够很好地解释宏观物理力学性状。随着固化材料掺量的增加和龄期的增长,淤泥固化土的孔隙体积和D50孔径明显减小,入口孔径分布特征亦发生了相应变化。所得流动固化土的入口孔径主要分布在0.01~10μm之间,最大分布孔径在0.5~2μm之间。
Microstructure of the flow-solidified soil of dredged clays was studied by mercury intrusion porosimetry(MIP).The influences of the solidification agent content and curing time on the volume and entrance pore size of the voids was analyzed.The relationship between the MIP results and macroscopic behavior was compared;and the results demonstrated that the MIP is successful and the microstructure characteristics is adequate to be used to explain the macro-mechanical properties.The volume of the voids and D50 changed markedly with the solidification agent content and curing time;and the entrance pore size changed correspondingly.The distribution range of the entrance pore diameters of the flow-solidified soils are mainly from 0.01 ?m to 10 ?m;and the maximum distribution diameters are mainly from 0.5 ?m to 2 ?m.
引文
[1]齐吉琳,谢定义,石玉成.土结构性的研究方法及现状[J].西北地震学报,2001,23(1):99-103.QI Ji-lin,XIE Ding-yi,SHI Yu-cheng.Status quo and method of quantitative on soil structure[J].Northwestern Seismological Journal,2001,23(1):99-103.
    [2]沈珠江.土体结构性的数学模型——21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97.
    [3]谢定义,齐吉琳.土结构性及其定量化研究的新途径[J].岩土工程学报,1999,21(6):651-656.XIE Ding-yi,QI Ji-lin.Soil structure characteristics and new approach in research on its quantitative parameter[J].Chinese Journal of Geotechnical Engineering,1999,21(6):651-656.
    [4]洪振舜,立石义孝,邓永锋.天然硅藻土的应力水平与孔隙空间分布的关系[J].岩土力学,2004,25(7):1023-1026.HONG Zhen-shun,TATEISHI Yoshitaka,DENG Yong-feng.Relationship between entrance pore distribution and stress level of natural sedimentary diatomaceous soil[J].Rock and Soil Mechanics,2004,25(7):1023-1026.
    [5]TANAKA H,LOCAT J.A microstructural investigation of Osaka Bay clay:The impact of microfossils on its mechanical behaviour[J].Canadian Geotechnical Journal,1999,36(3):493-508.
    [6]PENUMADU D,DEAN J.Compressibility effect in evaluating the pore-size distribution of kaolin clay using mercury intrusion porosimetry[J].Canadian Geo-technical Journal,2000,37(2):393-405.
    [7]HONG Z,TATEISHI Y,HAN J.Experimental study of macro and micro-behavior of natural diatomite[J].Geotechnical and Geoenvironmental Engineering,ASCE,2006,132(5):603-610.
    [8]陈悦,李东旭.压汞法测定材料孔结构的误差分析[J].硅酸盐通报,2006,25(4):198-201.CHEN Yue,LI Dong-xu.Analysis of error for pore structure of porous materials measured by MIP[J].Bulletin of the Chinese Ceramic Society,2006,25(4):198-201.
    [9]DELAGE P,LEFEBVRE G.Study of the structure of a sensitive Champlain clay and its evolution during consolidation[J].Canadian Geotechnical Journal,1984,21(1):21-35.
    [10]GRIFFITHS F J,JOSHI R C.Change in pore size distribution due to consolidation of clays[J].Gèotech-nique,1989,39(1):159-167.
    [11]MITCHELL J K.Fundamentals of soil behavior(second edition)[M].New York:John Wiley&Sons,Inc.,1993:154-155.
    [12]丁建文,洪振舜,刘松玉.疏浚淤泥流动固化处理与流动性试验研究[J].岩土力学,2011,32(增刊1):280-284.DING Jian-wen,HONG Zhen-shun,LIU Song-yu.Study of flow-solidification method and fluidity test of dredged clays[J].Rock and Soil Mechanics,2011,32(Supp.1):280-284.
    [13]汤怡新,刘汉龙,朱伟.水泥固化土工程特性试验研究[J].岩土工程学报,2000,22(5):549-554.TANG Yi-xin,LIU Han-long,ZHU Wei.Study of engineering properties of cement-stabilized soil[J].Chinese Journal of Geotechnical Engineering,2000,22(5):549-554.
    [14]朱伟,张春雷,高玉峰,等.海洋疏浚泥固化处理土基本力学性质研究[J].浙江大学学报(工学版),2005,39(10):1561-1565.ZHU Wei,ZHANG Chun-lei,GAO Yu-feng,et al.Fundamental mechanical properties of solidified dredgedmarine sediment[J].Journal of Zhejiang University(Engineering Science),2005,39(10):1561-1565.
    [15]丁建文,张帅,洪振舜,等.水泥-磷石膏双掺固化处理高含水率疏浚淤泥试验研究[J].岩土力学,2010,31(9):2817-2822.DING Jian-wen,ZHANG Shuai,HONG Zhen-shun,et al.Experimental study of solidification of dredged clays withhigh water content by adding cement and phosphogypsumsynchronously[J].Rock and Soil Mechanics,2010,31(9):2817-2822.
    [16]HORPIBULSUK S,MIURA N,NAGARAJ T S.Assessment of strength development in cement-admixedhigh water content clays with Abrams law as basis[J].Géotechnique,2003,53(4):439-444.
    [17]LIU S Y,ZHANG D W,LIU Z B,et al.Assessment ofunconfined compressive strength of cement stabilizedmarine clay[J].Marine Georesources&Geotechnology,2008,26(1):19-35.
    [18]SATOH T,TSUCHIDA T,MRRSUKURI K,et al.Fieldplacing test of lightweight treated soil under seawater inKumamoto Port[J].Soils and Foundations,2001,41(5):145-154.
    [19]BOUTOUIL M,LEVACHER D.Effect of high initialwater content on cement-based sludge solidification[J].Ground Improvement,2005,9(4):169-174.
    [20]VOCKA R,GALLE C,DUBOIS M,et al.Mercuryintrusion porosimetry and hierarchical structure of cementpastes:Theory and experiment[J].Cement and ConcreteResearch,2000,30(4):521-527.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心