近海风力发电高塔波浪随机动力响应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于拟层流风波生成机制建立的随机Fourier海浪模型,采用概率密度演化理论研究了近海风力发电高塔在随机波浪作用下的动力响应问题,给出了结构响应概率密度函数的时间演化过程、概率密度等值线图及其均值和标准差。其中随机波浪力由线性波浪理论和M orison公式计算。结果表明,概率密度演化方法可以获得结构波浪动力响应的时变概率密度函数和等概率密度响应轨迹。据此计算的均值及标准差与M on te C arlo计算结果吻合较好。
Based on stochastic Fourier model of ocean wave,which originates from quasi-laminar wind-wave generation mechanism,probability density evolution method(PDEM) is employed to investigate dynamic response of an offshore wind turbine tower subjected to random wave,and probability density evolution process of the responses,response track with equal probability density function value,mean and standard deviation are presented.Linear wave theory and Morison equation are used to estimate time history of wave forces.The results indicate that PDEM can present time-variant probability density function and response track with the equal probability density function value.The mean and standard deviation calculated by PDEM have a good agreement with ones in terms of Monte Carlo method.
引文
[1]Naess A.On a rational approach to extreme valueanalysis[J].Applied Ocean Research,1984,6(3):173—174.
    [2]Naess A.The statistical distribution of second-orderslowly varying forces and motions[J].AppliedOcean Research,1986,8(2):110—118.
    [3]Naess A.Response statistics of non-linear,second-order transformations to Gaussian loads[J].Journalof Sound and Vibration,1987,115(1):103—127.
    [4]Naess A.Approximate first-passage and extremes ofnarrow-band Gaussian and non-Gaussian randomvibration[J].Journal of Sound and Vibration,1990,138(3):365—380.
    [5]Naess A,Karlsen H C.Numerical calculation of thelevel crossing rate of second order stochastic Volterrasystems[J].Probabilistic Engineering Mechanics,2004,19:155—160.
    [6]Naess A,Gaidai O,Haver S.Efficient estimation ofextreme response of drag-dominated offshore str-uctures by Monte Carlo simulation[J].Ocean Eng-ineering,2007,34:2 188—3 197.
    [7]Malhotra A K,Penzien J.Non-deterministic analysis of offshore structures[J].Journal of EngineeringMechanics Division ASCE,1970,96(6):985—1003.
    [8]Chang M T,Tung C C.An approximate method fordynamic analysis of offshore structures to waveaction[J].International Journal Engineering Str-uctures,1990,12:120—123.
    [9]Wang J,Lutes L D.Analytical methods of non-Gaus-sian stochastic response of offshore structures[J].I-nternational Journal of Offshore and Polar Enginee-ring,1997,7(3):205—211.
    [10]Chandrasekaran S,Jain A K.Triangularconfiguration tension leg platform behaviour underrandom seawave loads[J].Ocean Engineering,2002,29:1895—1 928.
    [11]李杰,陈建兵.随机结构非线性动力反应的概率密度演化分析[J].力学学报,2003,35(6):716—722.
    [12]Chen J B,Li J.Dynamic reliability analysis of sto-chastic structures[A].Wu Z S,Abe M(ed.)Proceedings of First International Conference on Str-uctural Health Monitoring and Intelligent In-frastructure[C].Nov.13-15th,Tokyo,Japan.Lisse/Abingdon/Exton/Tokyo:A.A.BalkemaPublishers,2003,771—776.
    [13]Li J,Chen J B.The probability density evolution method for dynamic response analysis of non-linear sto-chastic structures[J].International Journal forNumerical Methods in Engineering,2006,65:882—903.
    [14]Li J,Chen J B.The principle of preservation ofprobability and the generalized density evolutionequation[J].Structural Safety,2008,30:65—77.
    [15]Miles J W.On the generation of surface waves byshear flows[J].J.Fluid Mech.,1957,3:185—204.
    [16]文圣常,于宙文.海浪理论与计算原理[M].北京:海洋出版社,1984.
    [17]徐亚洲,李杰.风浪相互作用Stokes模型[J].水科学进展,2009,20(2):281—286.
    [18]Conte S D,Miles J W.On the integration of the Orr-Sommerfeld equation[J].J.Soc.Indust.Appl.Math.,1959,7(4):361—369.
    [19]徐亚洲.随机海浪谱的物理模型与海洋结构波浪动力可靠度分析[D].上海:同济大学,2008.
    [20]陈建兵,李杰.结构随机响应概率密度演化分析的数论选点法[J].力学学报,2006,38(1):134—140.
    [21]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992.
    [22]竺艳蓉.海洋工程波浪力学[M].天津:天津大学出版社,1991.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心