基于FLAC~(3D)的断裂滞后突水数值仿真技术
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对中国华北型煤田煤系地层底板下伏奥陶系巨厚层灰岩含水层水压高,动、静贮量丰富,是构成矿井深部开采主要充水水源的实际现状,选择具有较好的过水能力、可能形成底板奥灰水突出通道的开滦矿业集团范各庄矿F0断层为研究对象,采用蠕变力学试验方法,取得了用于数值仿真计算的F0断层物质力学参数,运用FLAC3D数值仿真软件,对受断裂影响的采矿活动进行了流—固耦合模拟和渗流蠕变计算.研究结果表明:煤层顶板岩层受采动影响的影响带范围在断层两侧发育明显,上盘岩层的位移量偏小,下盘岩层的位移量偏大;底板岩层垂直位移量上盘岩层的位移量偏大,下盘岩层的位移量偏小,顶底板岩层垂直位移量在断层附近最大.断裂构造的切割作用使得底板在承受较大构造应力的情况下存在大范围的剪应力区,断裂破碎带的应力集中有是造成底板破坏、发生底板突水的关键.该研究成果对于有效预防断裂滞后突水具有一定指导意义.
The huge thick layer of ordovician limestone aquifer underlying the coal beds in Northern China coal field is the main water source in deep mining operation with a high pressure, and a large quantity in dynamic-static state. The fault F 0 was investigated in this study as it has a better water conductivity and may form a main water channel to Fangezhuang Colliery in Kailuan. The study obtains the mechanical parameters of fault F 0 using creep mechanics test. In addition, the fluid-solid interaction simulation and the seepage-creep calculation were conducted with FLAC 3D . The simulation results show that the affected zone of coal seam roof under mining is obviously developed on both sides of the fault while the hanging wall displacement is smaller than foot wall displacement. As to the floor strata, the vertical displacement of hanging wall is larger than that of the foot wall while the maximum vertical displacement of roof and floor strata occurs near the fault. The dissection of fracture structure creates a wide range shear stress area at the floor when the floor is subjected to large tectonic stress. The stress concentration is critical to the floor failure and water inrush. The study results have some guiding significance for effectively preventing lag water-bursting at fault zone.
引文
[1]刘仁武,孙景华.全国矿井水文工程地质学术交流会论文集[C].北京:地震出版社,1992:48-52.Liu Renwu,Sun Jinghua.The collected disquisitions of national mine hydro-geology interchange meeting[C].Beijing:The Earthquake Book Concern,1992:48-52.
    [2]童有德,叶贵钧.中国煤炭学会矿井地质专业委员会2001年论文集[C].北京:煤炭工业出版社,2001:181.Tong Youde,Ye Guijun.The collected disquisitions of China Coal Mine Geological Society of Professional Committee in2001academic years meeting[C].Beijing:Coal Industry Publishing House,2001:181.
    [3]倪宏革,罗国煜.煤矿水害的优势面机理研究[J].煤炭学报,2000,25(5):518-521.Ni Hongge,Luo Guoyu.The reaserch of predominace aspects mechanism in mining water calamity[J].Coal Journal,2000,25(5):518-521.
    [4]武强,刘金韬,董东林,等.煤层底板断裂突水时间弱化效应机理的仿真模拟研究[J].地质学报,2001,75(4):554-561.Wu qiang,Liu Jintao,Dong Donglin,etal.The simulation study of water seam floor fracture mechanism of the effect of weakening time[J].Geological Journal,2001,75(4):554-561.
    [5]杨小刚,刘洋,张壮路.数值模拟在回坡底煤矿底板突水防治中的应用[J].煤田地质与勘探,2008,36(5):58-61.Yang Xiaogang,Liu Yang,Zhang Zhuanglu.Numerical simulation in the floor inrush water control of Huipodi coal mine[J].Coal Geology and Exploration,2008,36(5):58-61.
    [6]王学滨,李毅.平面应变含缺陷岩样变形破坏全过程数值模拟[J].中国矿业大学学报,2005,34(2):198-203.Wang Xuebin,Li Yi.Numerical simulation of complete failure process of rock with material imperfection in plane compression strain[J].Journal of China University of Mining&Technology,2005,34(2):198-203.
    [7]周瑞光.岩体工程地质力学问题[M].北京:科学出版社,1990:67-76.Zhou Ruiguang.Geomechanics Problem in Rocks Engineering[M].Beijing:Science Publisher,1990:67-76.
    [8]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(4);299-308.Chen Ping,Zhang Youtian.Coupling analysis of seepage/stress for jointed rock[J].Chinese Journal of Rock Mechanics and Engineering,1994,13(4):299-308.
    [9]刘伟韬.煤层底板断裂滞后突水机理及数值仿真研究[D].北京:中国矿业大学(北京),2005.Liu Weitao.Study on mechanism of fracture lagging water inrush and numerical simulation in coal floor[D].Beijing:China University of Mining and Technology(Beijing),2005.
    [10]Itasca Cansitlting Group,Inc.FLAC3D,Version2.0,User's Manual[Z].USA:Itasca Consulting Group,Inc.,1997.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心