基于微结构颗粒理论的黄土场地响应波形数值模拟
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
通过对黄土场地爆破的波动响应频谱及其微观结构形态的分析,首次提出了黄土的微结构颗粒动力理论。根据颗粒理论建立了动应力–应变–时间的阻尼式,后引入波动方程最终得到黄土震动响应的波动时程算式。结合场地爆破数字资料记录,代入土力学参数进行计算验证,计算所得的加速度响应波形频谱与爆破记录测得的波形及频率均较为吻合。另外,在研究不同成因深度土层微结构颗粒的非线性频谱特点后,发现不同成因土层的微结构产生的响应频率是有差别的,并且与颗粒传导有关:松散的微结构高频成分多,力链传递"远";胶结较紧密的土层高频成分少,力链传递"近"。研究结果为黄土场地地震响应的理论分析提供了新的方法。
Based on analysis of response spectrum characteristics and microstructure of loess at blasting loess site,the micro-particle-dynamical theory is proposed firstly.According to the particle theory,the dynamic stress-strain-time damping equation is established,then,fluctuation time-history formula of loess seismic response is obtained through applying wave equation.Binding digital data record at the blast site,mechanical parameters of loess are introduced into the fluctuation formula,and the simulation wave curves are acquired.It shows that the waveform and frequency of the calculated acceleration response spectrum and the blasting waveform recording are relatively consistent.Moreover,studied on the characteristics of non-linear spectrum of different loess particles,different causes of formation microstructure of loess has difference response frequency,and correlated to its particle conduction.The loess of loose microstructure particles has more high-frequency components and "longer" power-chain transmission.However,the loess with dense microstructure particles has less high-frequency components and "shorter"power-chain transmission.It provides a new way for theoretical analysis of earthquakes response at loess site.
引文
[1]YOSHIDA N,KOBAYASHIS,SUETOMI I,et a1.Equivalentlinear method considering frequency dependent characteristics of stiffness and damping[J].Soil Dynamics and Earthquake Engineering,2002,22:205–222.
    [2]蒋通,邢海灵.水平土层地震反应分析考虑频率相关性的等效线性化方法[J].岩土工程学报,2007,29(2):218–224.(JIANG Tong,XING Hai-ling.An equivalent linear method considering frequency-dependent soil properties for seismic response analysis[J].Chinese Journal of Geotechnical Engineering,2007,29(2):218–224.(in Chinese))
    [3]陈国兴,刘雪珠,王炳辉.土动力参数变异性对深软场地地表地震动参数的影响[J].防灾减灾工程学报,2007,27(1):2–10.(CHEN Guo-xing,LIU Xue-zhu,WANG Bing-hui.Effect of variability of soil dynamic parameters on ground motion parameters for deep soft sites[J].Journal of Disaster Prevention and Mitigation Engineering,2007,27(1):2–10.(in Chinese))
    [4]庄海洋,刘雪珠,陈国兴.互层土的动参数试验研究及其地震反应分析[J].岩土力学,2005,26(9):1495–1498.(ZHUANG Hai-yang,LIU Xue-zhu,CHEN Guo-xing.A study on dynamic parameters and seismic response of interbedded soil[J].Rock and Soil Mechanics,2005,26(9):1495–1498.(in Chinese))
    [5]孙剑平,朱唏.考虑土非线性层状场地地震反应计算方法[J].岩石力学与工程学报,2001,20(2):220–224.(SUN Jian-ping,ZHU Xi.Seismic rsponse of laminated strata considering nonlinearity of soil[J].Journal of Rock Mechanics and Engineering,2001,20(2):220–224.(in Chinese))
    [6]薄景山,李秀领,等.土层结构对反应谱特征周期的影响[J].地震工程与工程振动,2003,23(5):42–45.(BO Jing-shan,LI Xiu-ling,et al.Effects of soil layer construction on characteristic periods of response spectra[J].Journal of Earthquake Engineering and Engineering Vibration,2003,23(5):42–45.(in Chinese))
    [7]石玉成,王兰民,林学文.黄土场地的爆破地震振动效应[J].岩石力学与工程学报,2003,22(11):1933–1938.(SHI Yu-cheng,WANG Lan-min,LIN Xue-wen.Effect of blash-induced ground motion in loess sites[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1933–1938.(in Chinese))
    [8]GB 5001l—2001建筑抗震设计规范[S].2001.(GB 5001l—2001 Code for sciemic design of buildings[S].2001.(in Chinese))
    [9]张权义,彭政,何润,等.运动物体在颗粒介质中的阻力形式[J].物理学报,2007,56(8):4708–4712.(ZHANG Quan-yi,PENG Zheng,HE Run,et al.The drag force experienced by a projectile in qranular medium under gravity[J].Acta Physica Sinica,2007,56(8):4708–4712.(in Chinese))
    [10]陆坤全,刘寄星.颗粒物质[J].物理,2004,33(10):713–721.(LU Kun-quan,LIU Ji-xing.Grain substance[J].Physics,2004,33(10):713–721.(in Chinese))
    [11]CERDA H,HONG D C.Model for subharmonic waves granular materials[J].Phy Rev Lett,1997,79:4570.
    [12]ROTHMAN D H.Oscillons,spiral waves and stripes in model of vibrated sand[J].Phys Rev E,1998(57):1239.
    [13]BAKAMJIAN B.Boundary integrals:an efficient method for modeling seismic wave propagation in 3-D[C]//62th Ann Internat Mtg Soc Exp1 Geophys Tulsa,Univ of Tulsa,1992:1232–1235.
    [14]FU L Y.Numerical study of generalized lipmann schwinger integral equation including surface topography[J].Geophysics,2003,68(2):665–671.
    [15]王兰民,孙军杰,黄雪峰,等.黄土场地震陷时桩基负摩阻力的现场试验研究[J].岩土工程学报,2008,30(3):314–319.(WANG Lan-min,SUN Jun-jie,HUANG Xue-feng,et al.Field test on negetive skin friction along piles caused be seismic seedment of loess[J].Chinese Journal of Geotechnical Engineering,2008,30(3):314–319.(in Chinese))
    [16]邓津.黄土微观结构的区域成土环境与震陷机理研究[D].兰州:兰州大学土木工程与力学学院,2009,6:55–67.(DENG-Jin.The regional environment forming microstructure of loess and mechanism of its seismic subsidence[D].Lanzhou:Lanzhou University,2009,6:55–67.(in Chinese))
    [17]王兰民,邓津,黄媛.黄土震陷性的微观结构量化分析[J].岩石力学与工程学报,2007,26(7):3025–3031.(WANG Lan-min,DENG Jin,HUANG Yuan.Quantitative analysis of microstructure of loess seismic subsidence[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(7):3025–3031.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心