常温下花岗岩受力热红外光谱变化与敏感响应波段
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
通过对两种花岗岩进行室内常温下单轴压缩加载,利用热红外光谱辐射计(8~14μm)对加载过程中试样的热红外光谱辐射进行观测,研究岩石受力过程热红外光谱变化特征,揭示其应力敏感波段.结果表明,花岗岩辐射亮度(增量)与应力呈线性关系,矿物组分及结构差异对应力敏感波段有重要影响.按红外光谱辐射亮度与载荷的相关系数、拟合直线最大变幅-标准偏差比两项指标进行综合分析,揭示富含钾长石的斑状花岗岩的应力敏感段为8.4~10.6μm,中心波长为8.75μm;富含斜长石的等粒花岗岩的应力敏感波段为8.2~11.7μm,中心波长为10.25μm.上述波段可分别作为相应花岗岩的应力与灾变红外遥感监测的优势波段.
This paper studied the variation of the stress-related thermal infrared spectrum of the rock under pressure.The thermal infrared spectrum radiation from two kinds of granites under uniaxial compression at room temperature was monitored with a spectroradiometer(8~14 μm).The experimental results show that the infrared radiance(amount of increase) of rock varies linearly with the stress.The stress sensitive waveband is determined by the mineral component and structures of the rock.The correlation coefficient between infrared radiance and load was analyzed comprehensively,so was the ratio of maximal variation to standard deviation.The results show that sensitive waveband to stress is in the range of 8.4~10.6μm for rich-feldspar porphyritic granite with central band at 8.75 μm;while for rich-plagioclase and equigranular granite,the sensitive waveband to stress is 8.2~11.7 μm,and centered at 10.25 μm.These wavebands can be used as reference for monitoring of the stress and catastrophe of the rock with infrared remote sensing.
引文
[1]Christensen P R,Bandfield J L,Hamilton V E.A thermalemission spectral library of rock-forming minerals[J],Jour-nal of Geophysical Research,2000,105(E4):9735-9739.
    [2]Gorny V I,Salman A G,Tronin A A,et al.The earth'soutgoing IR radiation as an indicator of seismic activity[J].Proc.Acad.Sci.USSR,1988,301:67-69.
    [3]Qiang Zuji,Xu Xiudeng,Lin Changgong.Satellite thermalinfrared anomaly-the sign before earthquake[J].ChineseScience Bulletin(强祖基,徐秀登,赁常恭.卫星热红外异常——临震前兆.科学通报),1990,35(17):1324-1327.
    [4]GENG Nai-Guang,CUI Cheng-Yu.DENG Ming-De.Re-mote sensing detection in rock fracture experiment and thebeginning of remote sensing rock mechanics[J].Acta Seis-mologica Sinica(耿乃光,崔承禹,邓明德.岩石破裂实验中的遥感观测与遥感岩石力学的开端.地震学报),1992,14(supp.):1377-1382.
    [5]Wu L X,Liu S J,Wu Y H,et al.Precursors for rock frac-turing and failure-Part I:IRR image abnormalities[J].Int.J.Rock Mech.&Min.Sci.,2006,43(3):473-482.
    [6]Wu L X,Liu S J,Wu Y H,et al.Precursors for rock frac-turing and failure-Part II:IRR T-Curve abnormalities[J].Int.J.Rock Mech.&Min.Sci.,2006,43(3):483-493.
    [7]MA Jin,LIU Li-Qiang,LIU Pei-Xun,et al.Thermal pre-cursory pattern of fault unstable sliding:An experimentalstudy of en echelon faults[J].Chinese J.Geophys(马瑾,刘力强,刘培洵,等.断层失稳错动热场前兆模式:雁列断层的实验研究.地球物理学报),2007,50(4):1141-1149.
    [8]CUI Cheng-Yu,DENG Ming-De,GENG Nai-Guang.RockSpectral Radiation Signatures Under Different Pressures[J].Chinese Science Bulletin(崔承禹,邓明德,耿乃光.在不同压力下岩石光谱辐射特性研究.科学通报),1993,38(16):538-541.
    [9]Freund F T,Takeuchi A,Lau B W S,et al.Stimulated in-frared emission from rocks:assessing a stress indicator[J].eEarth,2007,2:7-16.
    [10]Thomson W.On dynamical theory of heat[J],Trans.R.Soc.Edinburgh,1853,20:83-261.
    [11]DENG Ming-De,YIN Jing-Yuan,LIU Xi-Heng,et al.In-tegral Solution of the Formula of the Blackbody Radiationand its Application[J].Remote Sensing Information(邓明德,尹京苑,刘西垣.黑体辐射公式的积分解及应用.遥感信息),2002,(1):2-10.
    [12]LIU Shan-Jun,WU Li-Xin,WANG Chuan-Ying,et al.Remote sensing-rock mechanics(VIII)-TIR omens of rockfracturing[J].Chinese Journal of Rock Mechanics and En-gineering(刘善军,吴立新,王川婴,等.遥感-岩石力学(Ⅷ)--论岩石破裂的热红外前兆.岩石力学与工程学报),2004,23(10):1621-1627.
    [13]Hunt G R.Spectroscopic properties of rocks and minerals[M].In Practical Handbook of Physical Properties ofRocks and Minerals,edited by Carmichael R.S.,BocaRaton Florid:C.R.C.Press Inc.,1989.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心