三维土-结构动力相互作用体系分析的两步时域显式波动有限元过程
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为减少直接分析三维大尺度复杂土-结构动力相互作用问题的计算量,提高计算效率,本文直接从波动方程出发,提出了较常规子结构法更简单的两步简化计算过程,即第一步简化上部复杂结构体系为集中质量杆系模型,并求基础处等效输入,第二步通过等效输入求上部结构各位置的动力反应。其中第一步计算主要采用集中质量显式有限单元法结合局部透射人工边界实现,并编写了工程实用性强的时域三维土-结构动力相互作用专用分析程序3DSSI。和其它类似方法相比,本方法的特色从几个方面体现:完全采用时域显式递推的过程,使计算效率较高;上部复杂结构的简化,使计算量仅相当于土体自由场分析;等效输入的获得,可使土体-结构复杂体系的动力分析等效为常规的上部结构动力反应计算;时域算法较常用的频域法在土体非线性方面存在更大潜力。本文还通过典型的三维土-结构模型的建立,与相应的参考解相比,验证了本文提出的计算方法的有效性和计算精度,并初步探讨了土-结构动力相互作用体系的一些基本规律。
To save computational efforts,a two-step simplified computational procedure is proposed for three dimensional(3D) dynamic soil-structure interaction(SSI) analysis.In the first step,the whole structure-foundation-soil system under given excitation is analyzed,in which the upper structure is modeled as,for example,lumped-mass beams.In the second step,the response at the structure base obtained from the first step,i.e.the equivalent input,is applied to the base of the upper structure simulated by a sophisticated model,and the required structure responses can be determined.In this paper,an explicit method in the time domain is proposed to simplify the 3D SSI analysis,in which the equivalent input is computed via the lumped-mass explicit finite element method(FEM) with a local transmitting boundary condition.Based on the method,a software package 3D SSI is developed for 3D dynamic SSI analysis.A couple of 3D examples are presented to illustrate the efficiency and reliability of the procedure.The results are in good agreement with the reference solutions.Furthermore,the seismic responses of structures with typical seismic inputs in structure design are studied,and some major characteristics of dynamic SSI systems are investigated.The method can be easily extended to non-linear problems in a straight-forward manner while the method in the frequency domain is impossible.
引文
[1]Wolf J P.Soil structure in time domain[M].Englewood Cliffs,NJ:Prentice-Hall,1988.
    [2]Wong HL,Luco J E.Dynamic response of rigid foundations of arbitrary shape[J].Earthqu.Eng.Struct.Dyn.1976(4):579-587.
    [3]Wong HLLuco J E.Soil structure interaction:a linear continuum mechanics approach(CLASSI)[R].Los Angeles,California:CE,Departmentof Civil Engineering,University of California,U.S.C,1980.
    [4]刘晶波,谷音,李彬.结构地基开放系统动力相互作用问题的高效解法[J],土木工程学报,2006,39(5):112-116.
    [5]荣峰,汪家春,何树延,等.CARR堆厂房土壤结构相互作用与楼层反应谱分析[J].核动力学报,2006,27(5):19-23.
    [6]王天运,任辉启,刘国强,等.考虑土-结构相互作用的核电站动力分析方法[J].岩石力学与工程学报,2004,23,(22):3840-3845.
    [7]彭轶君,尚守平,朱志辉,等.有限元模拟土-箱基-框架结构大比例模型动力相互作用研究[J].铁道科学与工程学报,2006,3(1):75-79.
    [8]ABAQUS.ABAQUS Theory and User’s manuals,Version 6.2[R].Hibbitt,Karlsson&Sorensen,Inc.,Pawtucket,Rhode Island,USA,2001.
    [9]Berger E,Lysmer J,Seed HB.FLUSH—a computer program for seismic response analysis of axisymmetric soil-structure system[R].Berkeley:EERC,University of California,1975.
    [10]Lysmer J,JabataBaie-Raissi M,Tajirian F,et al.SASSI/S-a system for analysis of soil-structure interaction[R].University of california Berkeley,1981.
    [11]Zienkiewicz O C,Taylor R L,The Finite Element Method[M].CIMNE,2002.
    [12]廖振鹏.工程波动理论[M]。北京:科学出版社,2002
    [13]廖振鹏,黄孔亮,杨柏坡,等.暂态波透射边界[J].中国科学,A辑,1984.27(6):556-564.
    [14]GB50267-97核电厂抗震设计规范[S].北京:中国计划出版社,1998.
    [15]杨笑梅,王海涛,杨柏坡.三维竖向断层场地地面运动的影响[J].地震工程与工程震动,2008,28(2):1-7.
    [16]刘启方,金星,丁海平.复杂场地条件下震源参数对断层附近长周期地震动的影响[J].地球物理学报,2008,51:480-491.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心