页岩储层各向异性对裂缝起裂压力的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
页岩储层水平方向上的层理性结构导致了页岩较强的非均质性和各向异性。基于岩石横向各向同性本构关系以及渗流与变形耦合数值方法,建立了页岩水平井裂缝起裂的三维有限元数值模型,对射孔方位角、弹性力学各向异性以及地应力各向异性对水力裂缝起裂压力的敏感性进行了研究。研究结果表明:随射孔方位角的增加,起裂压力增大,起裂压力应力分布云图呈部分"椭圆状"且倾向于最大水平主应力方向;弹性模量各向异性较大和泊松比各向异性较小时,岩石表现出在水平方向上较强的刚性特征,裂缝起裂的可能性较大;弹性模量各向异性较小和泊松比各向异性较大时,岩石表现出在垂向方向上较强的刚性特征,岩石不易起裂。研究结果可以为页岩气井裂缝起裂压力预测提供参考依据。
Horizontal bedding architectures in shale lead to strong heterogeneity and anisotropy of reservoir formations. The 3D finite- element numerical model for fracturing in horizontal wells in shale has been established on the basis of isotropic features and numerical modeling of coupling of seepage and deformation. In the course,the sensibility of perforation azimuth,elastic mechanics anisotropy and geo- stress anisotropy to fracturing pressure of hydraulic fractures is tested. The results show that fracturing pressure increases with increase of perforation azimuth,while cloud atlas for distribution of stress related to fracturing pressure are characterized by partial "elliptical"configuration and inclined to the direction of maximum horizontal principal stress; given significant anisotropy of elastic modulus and small anisotropy of Poisson ratio,rocks may display high rigid features horizontally,which may correspond to higher possibility of fracturing; for minor elastic modulus anisotropy and significant anisotropy of Poisson ratio,rocks may display high rigid features vertically,which means less possibility of fracturing. The research results can provide necessary references for prediction of fracturing pressure in shale gas wells.
引文
[1]赵海峰,陈勉,金衍,等.页岩气藏网状裂缝系统的岩石断裂动力学[J].石油勘探与开发,2012,39(4):465-470.
    [2]Rivera Suarez,Green S J,et al.Effect of layered heterogeneity on fracture initiation in tight gas shales[C].SPE103327,2006:1-8.
    [3]陈安明,张辉,宋占伟.页岩气水平井钻完井关键技术分析[J].石油天然气学报,2012,11(2):98-103.
    [4]杨松.页岩气水平井钻完井和水力压裂技术[J].油气地球物理,2013,11(2):9-11.
    [5]张磊,李相方,徐兵祥,等.考虑滑脱效应的页岩气井底压力特征产能评价理论模型[J].大庆石油地质与开发,2013,32(3):157-163.
    [6]糜利栋,姜汉桥,李俊键,等.页岩储层气体扩散机理[J].大庆石油地质与开发,2014,33(1):154-159.
    [7]关富佳,吴恩江,邱争科,等.页岩气渗流机理对气藏开采的影响[J].大庆石油地质与开发,2011,30(2):80-83.
    [8]杨升宇,张金川.页岩油及其特征[J].大庆石油地质与开发,2012,31(5):47-50.
    [9]徐伟,王建民,王维红,等.各向异性速度分析技术在叠前反演中的应用[J].大庆石油地质与开发,2011,30(4):154-157.
    [10]孙敬,刘德华,张伟,等.利用生产动态资料判断低渗油藏裂缝分布[J].大庆石油地质与开发,2011,30(1):95-98.
    [11]闫传梁,邓金根,蔚宝华,等.页岩气储层井壁坍塌压力研究[J].岩石力学与工程学报,2013,32(8):1595-1602.
    [12]Serajian,Vahid,Ghassemi,et al.Hydraulic fracture initiation from a wellbore in transversely isotropic rock[C].SPE/ARMA11201,2011:3-7.
    [13]Roberto Suárez-Rivera,Chaitanya Deenadayalu,et al.The effect of laminated heterogeneity in wellbore stability and completion of tight gas shale reservoirs[C].SPE/OTC20269,2009:1-12.
    [14]刘云武,唐振国,陈守田.三维地震构造应力场模拟及裂缝储层预测[J].大庆石油地质与开发,2011,30(2):31-35.
    [15]曾凡辉,郭建春,赵金洲,等.深层裂缝性碎屑岩储层的网络裂缝酸化技术[J].大庆石油地质与开发,2011,30(4):101-104.
    [16]郭先敏,邓金根,陈宇.砂砾岩物理相破裂压力及裂缝扩展规律[J].大庆石油地质与开发,2011,30(5):109-112.
    [17]刘金华,唐建东,钟思瑛,等.致密碎屑岩储层构造裂缝微构造曲率预测方法[J].大庆石油地质与开发,2011,30(6):13-17.
    [18]王贤君,李存荣,韩露.含泥砂岩储层水力压裂裂缝起裂及延伸规律[J].大庆石油地质与开发,2012,31(4):107-109.
    [19]徐庆岩,杨正明,王学武,等.特低渗透油藏井网部署与人工压裂裂缝优化[J].大庆石油地质与开发,2012,31(5):93-97.
    [20]安永生,鲁玲,刘姝.压裂水平井增产因素分析与裂缝参数优化[J].大庆石油地质与开发,2012,31(6):109-113.
    [21]安丽影.伊通地堑基岩储层裂缝预测方法[J].大庆石油地质与开发,2013,32(1):163-165.
    [22]刘淑芬,赵旭,卢德唐,等.水平裂缝井试井解释方法及现场应用[J].大庆石油地质与开发,2013,32(2):75-78.
    [23]何春明,郭建春,刘超.变参数酸蚀裂缝导流能力实验[J].大庆石油地质与开发,2013,32(1):137-141.
    [24]Batugin,Nirenburg S R.Approximate relation between the elastic constants of anisotropic rocks and the anisotropy parameters[J].Journal of Mining Science,1972,8:5-9.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心