考虑初始缺陷影响的混凝土梁动态弯拉破坏模式分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
考虑到混凝土细观非均质性的影响,从细观角度出发,认为混凝土是由骨料、界面过渡区、砂浆基质及初始缺陷组成的四相复合材料,建立了混凝土简支梁的二维随机骨料模型。采用耦合材料应变率效应的塑性损伤本构模型来描述砂浆基质及界面的力学性能;假定骨料不产生损伤破坏,设定为弹性。对无缺陷、2%和5%孔隙率的混凝土梁进行弯拉破坏数值研究,探讨初始缺陷及加载速率对混凝土梁弯拉破坏模式、弯拉强度及宏观应力-应变关系的影响。数值结果表明:混凝土弯拉破坏模式及宏观力学性能具有明显的加载速率相关性;初始缺陷的存在对混凝土破坏模式及宏观力学性能具有很大的影响。
Considering the meso-cale heterogeneity, concrete was deemed as a four-phase composite composed of aggregate, mortar matrix, interface transitional zone(ITZ) and the initial defect in this paper. A two-dimensional random aggregate model of concrete beam was established. The plastic damaged model combined with the material strain-rate effect was employed to describe the mechanical properties of mortar matrix and the ITZ. It is also assumed that the aggregate was elastic, which would not be damaged. The numerical flexural-tensile study of the concrete beams consists of three different models, i.e. non-initial defects model, 2% porosity model, and 5% porosity model. The influences of initial defects and loading-rates on the flexural-tensile failure mode, flexural-tensile strength and macroscopic stress-strain relationship were discussed. The numerical results indicate that the flexural-tensile failure mode of concrete and the macro mechanical properties have obvious loading-rate dependency, while the existence of initial defect has great influence on concrete failure mode and macroscopic mechanical properties.
引文
[1]Machenzie J K.The elastic constants of solid containing spherical holes[J].Proceedings of Physical Society,1950,63(1):808―813.
    [2]Kumar R,Bhattacharjee B.Porosity,pore size distribution and in situ strength of concrete[J].Cement and Concrete Research,2003,33(2):155―164.
    [3]杜修力,金浏.考虑孔隙及微裂纹影响的混凝土宏观力学特性研究[J].工程力学,2012,29(8):101―107.Du Xiuli,Jin Liu.Research of the influence of pores and micro-cracks on the marcro-mechanical properties of concrete[J].Engineering Mechanics,2012,29(8):101―107.(in Chinese)
    [4]马怀发,陈厚群,黎保琨.应变率效应对混凝土动弯拉强度的影响[J].水利学报,2005,36(1):69―76.Ma Huaifa,Chen Houqun,Li Baokun.Influence of strain rate effect on dynamic bending strength of concrete[J].Journal of Hydraulic Engineering,2005,36(1):69―76.(in Chinese)
    [5]杜修力,田瑞俊,彭一江.预静载对全级配混凝土梁动弯拉强度的影响[J].地震工程与工程振动,2009,29(2):98―102.Du Xiuli.Tian Ruijun,Peng Yijiang.Influence of initial static loading on dynamic bending strength of fullygraded concrete beam[J].Journal of Earthquake Engineering and Engineering Vibration,2009,29(2):98―102.(in Chinese)
    [6]马怀发,王立涛,陈厚群,等.混凝土动态损伤的滞后特性[J].水利学报,2010,41(6):659―664.Ma Huaifa,Wang Litao,Chen Houqun,et al.Mechanism of dynamic damage delay characteristic of concrete[J].Journal of Hydraulic Engineering,2010,41(6):659―664.(in Chinese)
    [7]Lee J,Fenves G L.Plastic-damage model for cyclic loading of concrete structure[J].Journal of Engineering Mechanics,1988,124(8):892―900.
    [8]金浏,杜修力.加载速率及其突变对混凝土压缩破坏影响的数值研究[J].振动与冲击,2014,34(19):187―193.(待刊)Jin Liu,Du Xiuli.Meso-scale numerical analysis of the effect of loading rate on the tensile failure pattern of concrete[J].Journal of Vibration and Shock,2014,34(19):187―193.(in Chinese)
    [9]Du Xiuli,Jin Liu,Ma Guowei.Numerical simulation of dynamic tensile failure of concrete at meso-scale[J].International Journal of Impact Engineering,2014,66(1):5―17.
    [10]Grote D L,Park S W,Zhou M.Dynamic behavior of concrete at high strain rates and pressure:I.Experimental characterization[J].International Journal of Impact Engineering,2001,25(9):869―886.
    [11]Bischoff P H,Perry S H.Compressive behavior of concrete at high strain rates[J].Materials and Structures,1991,24(6):425―450.
    [12]Tedesco J W,Hughes M L,Ross C A.Numerical simulation of high strain rate concrete compression testes[J].Computers and Structures,1994,51(1):65―77.
    [13]Park S W,Xia Z,Zhou M.Dynamic behavior of concrete at high strain rates and pressures:II.Numerical simulation[J].International Journal of Impact Engineering,2001,25(9):887―910.
    [14]Kim S M,Abu Al-Rub R K.Meso-scale computational modeling of the plastic-damage response of cementitious composites[J].Cement and Concrete Research,2011,41(3):339―358.
    [15]Zhao H,Gary G.On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains[J].International Journal of Solids and Structures,1996,33(23):3363―3375.
    [16]Hentz S,Done F V,Daudeville L.Discrete element modeling of concrete submitted to dynamic loading at high strain rates[J].Computers and Structures,2004,82(29/30):2509―2524.
    [17]Malvar L J,Ross C A.Review of strain rate effects for concrete in tension[J].ACI Materials Journal,1998,95(6):735―739.
    [18]Zhou X Q,Hao H.Mesoscale modeling of concrete tensile failure mechanism at high strain rates[J].Computers and Structures,2008,86(21/22):2013―2026.
    [19]Kwan AKH,Wang Z M,Chan H C.Mesoscopic study of concrete II:nonlinear finite element analysis[J].Computers and Structures,1999,70(5):545―556.
    [20]Wriggers P,Moftah S O.Mesoscale models for concrete:Homogenisation and damage behavior[J].Finite Elements in Analysis and Design,2006,42(7):623―636.
    [21]DL/T 5150-2001,水工混凝土试验规程[S].北京:中国电力出版社,2002.DL/T 5150-2001,Test code of hydraulic concrete[S].Beijing:China Electric Power Press,2002.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心