热应力作用下LNG储罐外罐裂缝及失效时间分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
对于大型液化天然气储罐,内罐泄漏时,由于内外表面温差产生的巨大热应力对于外罐裂缝开展及储罐失效有非常重要的影响。为了获得外罐裂缝的开展规律以及储罐失效时间以便指导实际工程的设计与维护,利用传热学与弹塑性力学相关理论,提出了一种应力叠加方法,近似计算在内罐泄漏时外罐出现裂缝的内外温差,并且结合数值模拟结果进行对比分析,验证理论方法的准确性,确定裂缝开展规律,最终求得内罐从最不利泄漏点开始泄漏到外罐内侧混凝土开裂的储罐失效时间。结果表明:①内罐泄漏时,热应力巨大,不可忽略,热应力和其他荷载共同作用导致外罐产生大量裂缝,裂缝首先在外罐顶部内表面产生,并迅速向外表面开展,最终贯穿罐顶,导致储罐失效;②首次求得了储罐从内罐开始泄漏到外罐产生裂缝的最小时间,在此时间内采取有力措施及时处理,对控制事故发展、避免发生严重灾害具有重要意义。
For large LNG storage tanks,when leakage occurs in the inner tank,the thermal stress due to the temperature difference between the inner and outer surfaces has a very significant effect on the cracks development and failure of the outer tank wall.In order to obtain cracks law and failure time of the external wall and further to guide the design and maintenance of the actual project,the heat transfer theory and elastic-plastic mechanics were used to propose a stress superposition method to approximately calculate the temperature difference of the outer tank when it cracks in the inner tank leakage state.And numerical simulation results were compared to verify the accuracy of the theoretical method,determine the law of crack development,and calculate the time from the leak of the most disadvantaged inner tank leak point to the concrete cracks of the outer tank.The results show that:①in the inner tank leakage state,the temperature stress is enormous and cannot be ignored;cracks first appeared in the inner surface of the top of the tank wall,and quickly developed to the outer surface,and ultimately ran through the top of the tank wall,causing the tank failure;②obtaining the time from the inner tank leaking to the outer tank cracking for the first time and taking effective measures within the above time is of great significance to avoiding serious disasters.
引文
[1]顾安忠.液化天然气技术[M].北京:机械工业出版社,2004.Gu Anzhong.The liquefied natural gas technology[M].Beijing:China Machine Press,2004.
    [2]郑得文,张光武,杨冬,关辉,邵丽艳.国内外天然气资源现状与发展趋势[J].天然气工业,2008,28(1):47-49.Zheng Dewen,Zhang Guangwu,Yang Dong,Guan Hui,Shao Liyan.Status quo and trend of natural gas resource development in China and the world[J].Natural Gas Industry,2008,28(1):47-49.
    [3]刘小丽.中国天然气市场发展现状与特点[J].天然气工业,2010,30(7):1-6.Liu Xiaoli.Present situation and characteristics of the development of natural gas market in China[J].Natural Gas Industry,2010,30(7):1-6.
    [4]程旭东,朱兴吉.LNG储罐外墙温度应力分析及预应力筋设计[J].石油学报,2012,33(3):499-505.Cheng Xudong,Zhu Xingji.Thermal Stress analyses on external wall of LNG storage tank and the design of prestressed reinforcement[J].Acta Petrolei Sinica,2012,33(3):499-505.
    [5]张彬.预应力LNG储罐混凝土外墙地震响应分析[D].大庆:大庆石油学院,2009.Zhang Bin.Analysis on the exteroir walls of the prestressed concrete LNG storage tank under seismic response[D].Daqing.Daqing Petroleum Institute,2009.
    [6]张超,张海.LNG储罐穹顶裂缝控制及防治措施[J].山西建筑,2009,35(14):116-118.Zhang Chao,Zhang Hai.Controlling and prevention of cracks on dome of LNG tank[J].Shanxi Architecture,2009,35(14).116-118.
    [7]李海润,徐嘉爽,李兆慈.全容式LNG储罐罐体温度场计算及分析[J].天然气与石油,2012,30(4):15-19.Li Hairun,Xu Jiashuang,Li Zhaoci.Calculation and analysis on temperature field in full containment LNG tank[J].Natural Gas and Oil,2012,30(4),15-19.
    [8]Chen QS,Wegrzyn J,Prasad V.Analysis of temperature and pressure changes in liquefied natural gas(LNG)cryogenic tanks[J].Cryogenics,2004,44(10):701-709.
    [9]Chardome V,Verhagen B.Development of a procedure for the ultrasonic examination of 9%nickel LNG storage tank welds using phased array technology[J].Insight-Non-Destructive Testing and Condition Monitoring,2008,50(9):490-491.
    [10]Dahmani L,Khenane A,Kaci S.Behavior of the reinforced concrete at cryogenic temperatures[J].Cryogenics,2007,47(9/10):517-525.
    [11]王元清,武延民,石永久.低温对结构钢材主要力学性能影响的试验研究[J].铁道科学与工程学报,2005,2(1):1-4.Wang Yuanqing,Wu Yanmin,Shi Yongjiu.Experimental study on the main mechanical parameters of building steel under low temperature[J].Journal of Railway Science and Engineering,2005,2(1):l-4.
    [12]Dahmani L.Thermomechanical response of LNG concrete tank to cryogenic temperatures[J].Strength of Materials,2011,43(5):526-531.
    [13]翟希梅,王恒,周庆生,范峰.大型液化天然气储罐混凝土外罐施工期间温度裂缝预测[J].石油学报,2013,34(4):780-786.Zhai Ximei,Wang Heng,Zhou Qingsheng,Fan Feng.Temperature crack prediction in the construction period of a concrete outer tank for LNG storage[J].Acta Petrolei Sinica,2013,34(4):780-786.
    [14]程旭东,韩明一,彭文山,朱兴吉,李金玲.LNG储罐外罐施工期间的温度应力及裂缝分布[J].天然气工业,2014,34(9):107-112.Cheng Xudong,Han Mingyi,Peng Wenshan,Zhu Xingji,Li Jinling.Thermal stress and crack distribution of the concrete outside of an LNG storage tank during construction[J].Natural Gas Industry,2014,34(9)-107-112.
    [15]王润富,陈国荣.温度场和温度应力[M].北京:科学出版社,2005.Wang Runfu,Chen Guorong.Temperature field and thermal stress[M].Beijing:Science Press,2005.
    [16]彭明,丁乙.全容式LNG储罐绝热性能及保冷系统研究[J].天然气工业,2012,32(3):94-97.Peng Ming,Ding Yi.Thermal insulation performance and cold insulation system of full containment LNG storage tanks[J].Natural Gas Industry,2012,32(3):94-97.
    [17]Liang Bin,Noda N,Zhang Shufen.Two types of optimization of a cylindrical shell subjected to lateral pressure[J].International Journal of Pressure Vessels and Piping,2006,83(7):477-482.
    [18]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.Yang Shiming,Tao Wenquan.Heat transfer theory[M].Beijing:Higher Education Press,2006.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心