成层土体界面抗剪强度试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于在自行设计的土体界面抗剪强度测定装置中进行的室内试验结果,对不同含水率、不同黏粒质量分数、不同剪切速率下成层土体的界面抗剪强度及界面摩擦力进行了研究。结果表明:在工况相同的条件下,当黏粒质量分数较低时,成层土体间的界面抗剪强度及界面摩擦力随着黏粒质量分数的增加而增大;当黏粒质量分数较高时,成层土体间的界面抗剪强度及界面摩擦力随着黏粒质量分数的增加而减小。成层土体间的界面抗剪强度及界面摩擦力随着含水率的增加而减小。当改变剪切速率时,成层土体间的界面抗剪强度随着剪切速率的增加而增大,但界面摩擦力几乎无变化,保持在一个稳定状态。
Based on the laboratory tests carried out with a self-designed device for measuring soil interfacial shear strength,the interfacial shear strength and the interfacial friction of the stratified soils with different clay content,water content and shear rate are studied.The results show that when it comes to the same conditions,between the stratified soils with a lower clay content the interfacial shear strength and the interfacial friction increase with the clay content,whereas between those with a higher clay content the interfacial shear strength and the interfacial friction decrease with the clay content.The interfacial shear strength and the interfacial friction between the stratified soils decrease with the increase of water content.When the shear rate of the stratified soils changes the interfacial shear strength increases with the shear rate,but the interfacial friction varies little.
引文
[1]JENG D S.Mechanism of the wave-induced seabed instability in the vicinity of a breakwater:a review[J].Ocean Engineering,2001,28(5):537-570.
    [2]BNZ S,MIENERT J,BERNDT C.Geological controls on the Storeggagas-hydrate system of the mid-Norwegian continental margin[J].Earth and Planetary Science Letters,2003,209(3-4):291-307.
    [3]CANALS M,LASTRAS G,URGELES R,et al.Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data:case studies from the COSTA project[J].Marine Geology,2004,213(1):9-72.
    [4]WILSON C K,LONG D,BULAT J.The morphology,setting and processes of the Afen Slide[J].Marine Geology,2004,213(1):149-167.
    [5]URGELES R,LEYNAUD D,LASTRAS G,et al.Back-analysis and failure mechanisms of a large submarine slide on the Ebro slope,NW Mediterranean[J].Marine Geology,2006,226(3):185-206.
    [6]SULTAN N,VOISSER M,MARSSET B,et al.Potential role of compressional structures in generating submarine slope failures in the Niger Delta[J].Marine Geology,2007,237(3-4):169-190.
    [7]张亮,栾锡武.对海底滑坡稳定性影响因素的定量分析[C]∥中国地震学会第十三次学术大会论文集.北京:中国地震学会,2010.
    [8]房臣,张卫东.天然气水合物的分解导致海底沉积层滑坡的力学机理及相关分析[J].海洋科学集刊,2010,50:149-155.
    [9]LOCAT J,LEE H J.Submarine landslides:Advances and challenges[J].Canadian Geotechnical Journal,2002,39:193-212
    [10]王欣.波浪作用下粉质土底床液化后运动特征的试验研究[D].青岛:中国海洋大学,2010.
    [11]王欣,许国辉,孙永福,等.黄河水下三角洲液化海底的重新层化及其试验求证[J].海洋地质与第四纪地质,2013,33(6):29-40.
    [12]NNADI F N,WILSON K C.Bed-load motion at high shear stress:dune washout and plane-bed flow[J].Journal of Hydraulic Engineering,1995,121(3):267-273.
    [13]PUGH F J,WILSON K C.Velocity and concentration distributions in sheet flow above plane beds[J].Journal of Hydraulic Engineering,1999,125(2):117-125.
    [14]魏龙,王义刚,黄惠明.推移层厚度研究综述[J].泥沙研究,2014,(2):72-80.
    [15]杨作升,陈卫民,陈彰榕,等.黄河口水下滑坡体系[J].海洋与湖沼,1994,(6):573-581.
    [16]杨林青.海底斜坡稳定性及滑移影响因素分析[D].大连:大连理工大学,2012.
    [17]常方强.波浪作用下黄河口海底滑坡研究[D].青岛:中国海洋大学,2009.
    [18]JENG D S,LEE T L.Dynamic response of porous seabed to ocean waves[J].Computers and Geotechnics,2001,28(2):99-128.
    [19]董胜,郑天立.海岸防灾工程[M].青岛:中国海洋大学出版社,2011:213-221.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心