地震波速度约束的大横向黏度变化的地幔对流研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文将横向黏度变化提高到3个量级,获得了地震波速度结构约束下的大横向黏度变化的地幔浅部的极型场和环型场对流图像.与小横向黏度变化下的结果相比,本文的结果具有显著的改善.对极型场对流图像,主要体现在本文结果能更清楚地解释太平洋板块、大洋洲和南美洲以及东太平洋洋中脊处的现今运动状态;对环型场对流图像,能更合理地解释北太平洋板块的右旋运动.本文计算的极型场、环型场对流速率以及揭示的某些区域如欧亚大陆和非洲大陆的运动状态与现今地表板块的运动速率以及欧亚板块和非洲板块的运动状态有明显差异,但相比小横向黏度变化下的结果,有助于更好地认识和理解现今地表板块运动的深部动力学过程.
In the present paper,the poloidal and toroidal convection patterns at shallow depths of the mantle were obtained for the mantle convection model with large lateral variable viscosity (LVV)of 3 orders constrained by seismic wave velocity.Compared with the results of small LVV,the results in this paper were bettered remarkably.It mainly showed that we could interpret more reasonably the current motion states of the Pacific plate,the Oceania and the South America and at the ridge of the eastern Pacific Ocean from the poloidal convection patterns and the clockwise rotations of the northern Pacific plate from the toroidal convection patterns in this paper.The computed poloidal and toroidal convection rates and the motion states in some regions such as Euro-Asian and African continents revealed by convection patterns were different from the motion rates of current plates and the current motion states of Euro-Asian and African plates,but compared with the results of small LVV,it could be helpful to understand and recognize more reasonably the deep dynamic processes of current plate motions.
引文
[1] Hager B H.Subducted slabs and the geoid;constrains on mantle rheology and flow.J.Geophys.Res.,1984,89:6003~6015
    [2] Mitrovica J X* Peltier W R.Constrains on mantle viscosity based upon the inversion of post-glacial uplift data from the Hudson Bay region.Geophys.J.Int.,1995,122:353~370
    [3] Ranalli G.Mantle rheology:radial and lateral viscosity variations inferred from microphysical creep laws.Journal of Geodynamics,2001,32(4-5) :425~444
    [4] 朱涛,王兰炜,陈化然.横向黏度变化对球层中热对流的影响.地球物理学报,2010,53(2) :350~361 Zhu T,Wang L W,Chen H R.Effects of lateral viscosity variation on thermal convection in a spherical shell.Chinese J.Geophys.(in Chinese),2010,53(2) :350~361
    [5] Ratcliff J T,Schubert G,Zebib A.Steady tetrahedral and cubic patterns of spherical shell convection with temperaturedependent viscosity.J.Geophys.Res.,1996,101(B11) :25473~25484
    [6] Stemmer K,Harder H,Hansen U.A new method to simulate convection with strongly temperature-and pressuredependent viscosity in a spherical shell:Applications to the earth s mantle.Physics of the Earth and Planetary Interiors,2006,157,223~249
    [7] Christensen U,Harder H.3D convection with variable viscosity.Geophy.s.J.Int.,1991,104:213~226
    [8] Richards M A,Hager B H.Effects of lateral viscosity variations on geoid anomalies and topography.J.Geophys.Res.,1989,94(B8) ,10299-10313
    [9] Zhong S,Zuber M T,Moresi L,et al.Role of temperaturedependent viscosity and surface plates in spherical shell models of mantle convection.J.Geophys.Res.,2000,105(B5) :11063-11082
    [10] Tackley P.Effects of strongly temperature-dependent viscosity on time-dependent,three-dimensional models of mantle convection.Geophys.Res.Lett.,1993,20:2187~2190
    [11] Bunge H,Richards M A.The origin of long scale structure in mantle convection.-Effects of plate motions and viscosity stratification.Geophys.Res.Lett.,1996,23 (21) :2987~2990
    [12] Yoshida M,Nakakuki T.Effects on the long-wavelength geoid anomaly of lateral viscosity variations caused by stiff subducting slabs,weak plate margins and lower mantle rheology.Physics of the Earth and Planetary Interiors,2009,172:278~288
    [13] Cadek O,Fleitout L.Effect of lateral viscosity variations in the coremantle boundary region on predictions of the long wavelength geoid.Stud.Geophys.Geod.,2006,50:217~232
    [14] Wang H,Wu P.Effects of lateral variations in lithospheric thickness and mantle viscosity on glacially induced relative sea levels and long wavelength gravity field in a spherical,selfgravitating Maxwell Earth.Earth and Planetary Science Letters,2006,249:368~383
    [15] Oliver D S,Booker J R.Planform of convection with strongly temperature-dependent viscosity.Geophysical &.Astrophysical Fluid Dynamics,1983,27(1) :73~85
    [16] 朱涛,冯锐.球层中的非线性自由热对流--变黏度模型.地震学报,2005,27(2) :194~204 Zhu T,Feng R.Nonlinear free thermal convection in a spherical shell:A variable viscosity model.Acta Seismologica Sinica (in Chinese),2005,27(2) :194~204
    [17] 朱涛,马宗晋,冯锐.三维地震波速结构约束下的变黏度地幔对流及其动力学意义.地球物理学报,2006,49(5) :1347~1358 Zhu T,Ma Z J,Feng R.3-D lateral variable viscosity mantle convection constrained by seismic wave velocity and its geodynamic implications.Chinese J.Geophys.(in Chinese),2006,49(5) :1347~1358
    [18] 傅容珊,黄建华.地球动力学.北京:高等教育出版社,2006. Fu R S,Huang J H.Geodynamics (in Chinese).Beijing:Higher Education Press,2006
    [19] Buckus G.A class of self-sustaining dissipative spherical dynamos.Ann.Phys.,1958,4:381~384
    [20] Kirby S H,Kronenberg A K.Rheology of the lithosphere:selected topics.Rev.Geophys.,1987,25(6) :1219~1244
    [21] Zhang S,Christensen U.Some effects of lateral viscosity variations on geoid and surface velocities induced by density anomalies in the mantle.Geophys.J.Int.,1993,114:531~547
    [22] 傅容珊,董树谦,黄建华等.地震层析成像地幔对流新模型的研究.地球物理学报,2002,45(增刊):136~142 Fu R S,Dong S Q,Huang J H,et al.A new mantle convection model constrained by seismic tomography.Chinese J.Geophys.(in Chinese),2002,45(Suppl.):136~142
    [23] Zebib A,Schubert G,Straus J M.Infinite Prandtl number thermal convection in a spherical shell.J.Fluid Mech.,1980,97(2) :257~277
    [24] 叶正仁,滕春凯,张新武.地幔对流与岩石圈板块的相互耦合及影响--(1) 球腔中的自由热对流.地球物理学报,1995,38(2) :174~180 Ye Z R,Teng C K,Zhang X W.Coupling between mantle circulation and lithospheric plates-(I) Thermal free convection in a spherical shell.Chinese J.Geophys.(Acta Geophysica Sinica) (in Chinese),1995,38(2) :174~180
    [25] 朱涛,冯锐.球层中高阶自由热对流格局及其变化的研究.地震学报,2005,27(1) :11~24 Zhu T,Feng R.The patterns of high-degree thermal free convection and its features in a spherical shell.Acta Seismologica Sinica (in Chinese),2005,27(1) :11~24
    [25] Su W J,Robert L W,Dziewonski A M.Degree 12 model of shear velocity heterogeneity in the mantle.J.Geophys.Res.,1994,99(B4) :6945~6980
    [26] Dziewonski A M,Anderson D L.Preliminary reference earth model.Physics of the Earth and Planetary Interiors ,1981,25:297-356
    [27] 杨柳,陈艳萍.求解非线性方程组的一种新的全局收敛的Levenberg-Marquardt算法.计算数学,2008,30(4) :388~396 Yang L,Chen Y P.A new globally convergent LevenbergMarquardt method for solving nonlinear system of equations.Mathernatica Numerica Sinica (in Chinese),2008,30 (4) :388~396
    [28] Forte A M,Peltier W R.Plate tectonics and aspherical earth structure:The importance of poloidal-toroidal coupling.J.Geophys.Res.,1987,92:3645~3679
    [29] 马宗晋.全球三大构造体系与板条构造.见:全球构造与固体地球多圈层相互作用.香山科学会议第143次学术讨论会,2000:14~16 Ma Z J.The earth's three great tectonic systems and plate strip tectonics.In:Coupling between Earth's Tectonics and Multisphere (in Chinese).Xiangshan Scientific Convention,2000,(143) :14~16
    [30] Hager B H,O'Connell R J.Kinemetic models of large-scale mantle flow.J.Geophys.Res.,1979,84:1031~1048
    [31] Richard Y,Vigny C.Mantle dynamics with induced plate tectonics.J.Geophys.Res.,1989,94:17543~17560
    [32] Gable C W,O'Connell R J.Convection in three dimensions with surface plates;Generation of toroidal flow.J.Geophys.Res.,1991,96(B5) :8391~8450
    [33] 叶正仁,朱日祥.地幔对流与岩石圈板块的相互耦合及影 响--(Ⅱ)地幔混合对流理论及其应用.地球物理学报,1996,39(1) :47~56 Ye Z R,Zhu R X.Coupling between mantle circulation and lithospheric plates (Ⅱ) mix convection and its applications.ChineseJ.Geophys.(in Chinese),1996,39(1) :47~56

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心