黄河下游冲积粉土地震液化机理及其判别
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
在粉土或砂土分布广泛的地区,地震液化是导致地基失稳和上部结构受损的直接原因之一.基于大量的现场调查,分析了黄河下游冲积粉土的成因及土体组成,在该区域粉土组成中粒径为0.005~0.020 mm的粉粒已经具备黏性,明显影响到粉土的工程性质.在动三轴试验基础上阐述了该区域粉土的动力特性和液化机理.最后结合该区域粉土土质特点和工程实例比较了现有的地震液化判别方法,指出该区域粉土液化判别应考虑黏性粉粒的影响,并依此利用塑性指数对液化判据进行了改进.对于该区域粉土,可将现行抗震规范中"黏粒含量10、13、16对应地震烈度7度、8度、9度判别为不液化"的规定,改为"塑性指数7.0、8.5、10.0对应地震烈度7度、8度、9度判别为不液化".
The soil liquefaction caused by earthquake is one of the direct reasons for the foundation invalidation and the structure collapse in the area where the saturated sand or silt distributes widely.The formation and composition of the alluvial silt in the lower reaches of Yellow River were investigated based on the practical investigation.The silt whose grain diameter lies in the range of 0.005 mm to 0.020 mm has possessed viscosity and obviously affects the engineering property of soil.Then the dynamic properties and liquefaction mechanism of the silt were illuminated on the basis of dynamic triaxial test.And a comparison was presented between the existed earthquake liquefaction assessment methods combined with the silt properties and several engineering examples.Analysis suggests that the influence of cohesive silt should be taken into account in the liquefaction assessment,which can be realized with plasticity index.According to the characteristics of the silt in this area,the statement in the code for seismic design that according to the seisimic fortification intensity 7,8,9,the situations of cohesive grain content 10、13、16 should be assessed as no liquefaction,should be replaced with the statement that according to the seisimic fortification intensity 7,8,9,the situations of plastic index 7.0,8.5,10.0 should be assessed as no liquefaction.
引文
[1]吴世明,徐攸在.土动力学现状与发展[J].岩土工程学报,1998,20(3):281 287.WU Shi-ming,XU You-zai.State-of-art and develop-ment of soil dynamics[J].Chinese Journal of Geotechni-cal Engineering,1998,20(3):281 287.
    [2]SINGH S.Liquefaction characteristics of silt[C]∥Ground Failure under Seismic Conditions.Atlanta:ASCE,1994,44:91 105.
    [3]汪闻韶.土工抗震研究进展[J].岩土工程学报,1993,15(6):710 716.WANG Wen-shao.Development of study on geotechni-cal engineering seismic resistance[J].Chinese Journal ofGeotechnical Engineering,1993,15(6):710 716.
    [4]钟龙辉.轻亚黏土地震液化判别方法的分析[J].岩土工程学报,1980,3(3):32 36.ZHONG Long-hui.Analysis for evaluating liquefaction oflow plasticity clays during earthquake[J].Chinese Journalof Geotechnical Engineering,1980,3(3):32 36.
    [5]王余庆.轻亚黏土地震液化的判别[C]∥地基与工业建筑抗震论文集.北京:地震出版社,1984.WANG Yu-qing.Prediction of liquefaction potential ofclay silt[C]∥Proceedings of Symposium on Seismic Re-sistance of Foundation&Industrial Construction.Bei-jing:Seism Publishing House,1984.
    [6]阮永芬,巫志辉.饱和粉土的若干动力特性研究[J].岩土工程学报,1995,17(4):480 491.RUAN Yong-fen,WU Zhi-hui.Some dynamic proper-ties of sandy loam[J].Chinese Journal of GeotechnicalEngineering,1995,17(4):480 491.
    [7]汪闻韶.土的动力强度及液化特性[M].北京:建筑工业出版社,1996.
    [8]黄博.粉土和粉砂的动力特性及地震液化研究[D].杭州:浙江大学,2003.HUANG Bo.Study on dynamic property and seismicliquefaction of silt and sand[D].Hangzhou:ZhejiangUniversity,2003.
    [9]山东省地震局.山东抗震资料[M].济南:山东省地震局,2000.
    [10]尹学良.黄河下游的河性[M].北京:中国水利水电出版社,1995:13 54.
    [11]张瑞瑾.河流泥沙动力学[M].北京:中国水利水电出版社,1998:46 62.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心