可液化地基上边坡加固桩地震动力破坏特点研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
采用研制的微混凝土抗滑模型桩,利用动力离心模型试验研究了高水位抗滑桩加固边坡的动力反应、动孔压变化、地基液化以及液化后大变形滑坡和动力断桩破坏规律。试验结果表明:由于动孔压上升较大,有效应力降低较多,导致动弯矩增幅较大,且动力附加弯矩值大于震前静力弯矩,表明地基液化与土体滑动导致的动力附加弯矩是抗滑桩产生断桩的主要原因。抗滑桩桩体完全断桩后,桩底静动总弯矩接近于零,嵌固约束完全失效,转化为活动铰约束。同时,饱和地基部分液化使得边坡上部土体的动力响应略有减小,加速度响应是随着高程先减小,然后略有增大。
By making use of model concrete piles,the dynamic centrifuge modeling test was performed to investigate the seismic response of slope and dynamic failure process of stabilizing piles in slope with high water level.The slide of slope surface and the crack failure of piles were observed during the earthquake.The results can characterize the distribution of response acceleration in the slope and the distribution of moment in the pile along with the accumulation of excess pore pressure.According to the observation and the test results,it can be concluded that the liquefaction of foundation makes the moment of pile increase sharply and results in the crack failure at the ends of piles.The liquefaction of foundation attenuates the acceleration response in the upper part of slope.
引文
[1]Finn W D L,Fujita N.Piles in liquefiable soils:seismic analysis and design issues[J].Soil Dynamics andEarthquake Engineering,2002,22(9-12):731-742.
    [2]汪明武,IAI Susumu,TOBITA Testuo.液化场地堤坝地震响应动态土工离心试验及模拟[J].水利学报,2008,39(12):1346-1352.
    [3]Satoh H,Ohbo N,Yoshizako K.Dynamic test on behavior of pile during lateral ground flow[C]∥Centrifuge 98.Rotterdam:A.A.Balkema,1998:327-332.
    [4]于玉贞,邓丽军.抗滑桩加固边坡地震响应离心模型试验[J].岩土工程学报,2007,29(9):1320-1323.
    [5]Takahashi A,Takemura J,Kawaguchi Y,et al.Stability of piled pier subjected to lateral flow of soils duringearthquake[C]∥Centrifuge 98.Rotterdam:A.A.Balkema,1998:365-370.
    [6]李荣建,于玉贞,吕禾,等.饱和砂土地基上抗滑桩加固边坡的动力离心模型试验研究[J].岩土力学,2009,30(4):897-902.
    [7]李荣建,于玉贞,柴霖,等.微混凝土抗滑模型桩的地震动力弹性反应试验研究[J].水利水电技术2008,39(5):47-50.
    [8]李荣建,于玉贞,吕禾,等.动力离心模型试验中微混凝土抗滑模型桩的设计[J].清华大学学报,2009,49(9):66-70.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心