土质场地重力式挡土墙地震土压力振动台实验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
汶川震区路基挡土墙震害表明,地震动荷载作用下重力式挡墙的位移、破坏与基础场地形式有关,除岩质场地和土质场地挡墙所共有的外倾形式,土质地基挡土墙还表现有整体推移及下部向外推移的倾转变形等复杂模式,因此地震土压力大小及分布也将受到这种复杂土-结相互作用的影响。基于碎石土及风化花岗岩填料的土质场地重力式挡土墙大型振动台模型实验,对挡土墙地震土压力及变形模式开展了对比研究,发现在强震作用下,土质地基挡墙因基础约束较弱而产生位移,并伴随明显的墙—土分离现象,致使实测地震土压力较之抗震设计规范计算值偏小(0.4g峰值加速度下约小6%~15%),但作用点高度变化不大。由实验结果与现行抗震规范计算值的安全系数对比,认为对土质场地挡墙的地震土压力计算,按现行国内抗震设计规范基本能满足实际工程抗震设计需要;对于地震区挡墙设计,在允许挡墙发生少量容许位移的前提下可采用内摩擦角较大、自稳能力更好的墙背填料以减少地震土压力。
Based on Wenchuan earthquake damage survey,displacement and destruction of retaining wall under earthquake are related to the wall-based site form,In addition to the common form of extraversion on the rock site and soil site,The retaining wall on the soil site also perform whole movement and the lower passage rotating deformation complicated form,So the size of the seismic earth pressure and distribution will also effected by the complexity soil-struction interacting.Based on large-scale shaking table model test of GRW filled crushed gravel and decomposed granite,Compared seismic earth pressure and deformation,Experiments show that under strong earthquakes,due to the weak constraints of soil foundation,retaining wall occurred displacement and wall-soil separation,These lead to the measured seismic soil pressure smaller than design codes calculated(about 10% smaller at 0.4g peak acceleration),but the point of pressure application changed little.By compared the test measured with the design codes calculated seismic soil pressure safety factors of GRW.Show that to the soil foundation retaining wall,the seismic soil pressure calculated by current seismic design codes can meet the engineering needs of seismic design,If small displacement of retaining wall can be allowed in retaining wall design for earthquake zone;adopting filling material of the back wall which presents greater internal friction angle and better self-stable ability may reduce the seismic soil pressure.
引文
[1]陈学良.重力挡土墙地震反应研究评述[J].自然灾害学报,2006,15(6):139-146.
    [2]JTJ 044-89,公路工程抗震设计规范[S].
    [3]GB 50111-2006,铁路工程抗震设计规范[S].
    [4]陈国兴,庄海洋,等.土-地铁隧道动力相互作用的大型振动台实验-实验结果分析[J].地震工程与工程振动,2007,27(1):164-170.
    [5]吕西林,陈跃庆,陈波,等.结构-地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动,2000,20(4):20-29.
    [6]徐光兴,姚令侃.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报,2008,27(3):624-632.
    [7]吴伟,姚令侃.坡形和加筋措施对地震响应影响的振动台模型实验研究[J].重庆交通大学学报,2008,27(5):689-694.
    [8]陈忠达.公路挡土墙设计[S].北京:人民交通出版社,1999.
    [9]铁道部第一勘察设计院.铁路工程设计技术手册-路基[S].北京:中国铁道出版社,1992.
    [10]RAFNSSONEA,PRAKASHS.Stiffness and damping paramet-ers for dynamic analysis of retaining walls[C].Proceeding of2nd International Conf-erence on Recent Advances inGeotechnical Earthquake Engineering and Soil Dynamics.StLouis:[s.n.],1991:1943-1952.
    [11]WU YW,PRAKASHS.Seismic displacement of rigid retainingwalls on submergence[C/OL].Proceeding of 12th World Con-ference on Earth-quake Engineering.Philippines,2000:0562.
    [12]张建经.支挡结构抗震设计的2个关键技术问题[J].西南交通大学学报,2009,44(3):322-323.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心