AP1000常规岛主厂房结构弹塑性地震响应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
核电厂主厂房结构具有质量、刚度分布不均等特点,为了保证电厂运行功能在罕遇地震下不中断,避免重大设备损坏和核泄漏而造成的严重财产损失和人员伤亡,对核电厂主厂房结构进行弹塑性地震响应分析显得尤为重要。以某实际工程为研究对象,在结构的动力特性和反应谱分析的基础上,采用基于纤维模型理论的大型通用有限元软件ABAQUS对核电厂主厂房结构的抗震性能进行了分析,研究了弹塑性模型在整个地震作用过程中的变形及受力特点,并验证了整个方法的有效性和可行性。分析结果表明:结构最大层间位移角满足规范1/100的限值要求,结构在7度罕遇地震作用下能够满足"大震不倒"的设防要求,可为核电厂主厂房结构的抗震设计提供依据。
The main workshop structure of nuclear power plant has the characteristics of uneven distribution on mass and stiffness. It is important particularly to research the elastic-plastic seismic response analysis on the main workshop to ensure the normal operation of power plant in rare earthquake,prevent serious property damage and casualties caused by major equipment damage and nuclear leakage. Taking a practical project as the research object,this paper used the large general finite element software ABAQUS,in which the fiber model was used,to research the structural seismic performance under rare earthquake and the deformation and mechanical characteristics of elastoplastic model throughout the earthquake effect, then the effectiveness and feasibility of the method was verified,on the basis of the structural dynamic characteristics and response spectrum analysis. The analysis results show that the structural maximum interlayer displacement angle can meet the demands of 1 /100 limit; the seismic fortification standard of "no collapse under strong earthquake"can be achieved in rare earthquake with Ms7. 0,which can provide important basis for the seismic design of main workshop structure in nuclear power plant.
引文
[1]尹春明,钱萍.新型核电站常规岛结构设计发展分析[J].电力勘测设计,2010(2):67-72.
    [2]曲哲,叶列平,潘鹏.建筑结构弹塑性时程分析中地震动记录选取方法的比较研究[J].土木工程学报,2011,44(7):10-21.
    [3]黄忠海,廖耘,李盛勇,等.广州珠江新城东塔罕遇地震作用弹塑性分析[J].建筑结构学报,2012,33(11):82-90.
    [4]Penizen J.Dynamic response of elasto2 plastic frames[J].Journal of Structural Division,ASCE,1962,88:1322-1340.
    [5]Takeda T,Sozen M A,Nielson N N.Reinforced concrete response to simulated earthquakes[J].Journal of Structural Division,ASCE,1970,96(ST12):2557-2572.
    [6]Guidelines for seismic performance evaluation of reinforced concrete buildings[S].Architectural Institute of Japan,2004.
    [7]Seismic design of reinforced concrete structures for controlled inelastic response(design concepts)[S].Comite Euro-International du Beton-CEB,2003.
    [8]林生逸,彭雪平,韩小雷,等.核电站常规岛主厂房基于性能的抗震分析[J].地震工程与工程振动,2011,31(5):50-59.
    [9]林生逸.基于PERFORM-3D的常规岛主厂房结构弹塑性时程分析[J].武汉大学学报:工学版,2013,46(S1):103-107.
    [10]FEMA 356.Prestandard and commentary for the seismic rehabilitation of buildings[S].Federal Emergency Management Agency,2000.
    [11]张琴,张扬,周向群,等.核电厂常规岛厂房结构基于性能抗震设计的方法[J].工业建筑,2010,40(4):51-55.
    [12]宋远齐,汪小刚,温彦锋,等.大型火电厂主厂房框排架结构弹塑性时程反应分析[J].工业建筑,2010,40(1):51-54.
    [13]宋远齐,汪小刚,温彦锋,等.大型火电厂主厂房框排架结构静力弹塑性地震反应分析[J].电力建设,2009,30(5):59-62.
    [14]GB 50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2012.
    [15]汪大绥,李志山,李承铭,等.复杂结构弹塑性时程分析在ABAQUS软件中的实现[J].建筑结构,2007,37(5):92-96.
    [16]杨先桥,傅学怡,黄用军.深圳平安金融中心塔楼动力弹塑性分析[J].建筑结构学报,2012,32(7):40-49.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心