麻粒岩中的水对大陆下地壳性质和演化的启示
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
  • 中文刊名:自然科学进展
  • 作者:杨晓志 ; 夏群科 ; E.Deloule ; 樊祺诚 ; 郝艳涛
  • 中文关键词:大陆下地壳 ; 麻粒岩 ; 流体作用 ; 结构水
  • 出版日期:2007-02-28
  • 机构:中国科学技术大学地球和空间科学学院中国科学院壳幔物质与环境实验室,中国科学技术大学地球和空间科学学院中国科学院壳幔物质与环境实验室,CRPG-CNRS Nancy France,中国地震局地质研究所,中国科学技术大学地球和空间科学学院中国科学院壳幔物质与环境实验室,,合肥 230026,合肥 230026,北京 100029,合肥 230026
  • 年:2007
  • 期:02
  • 出版单位:自然科学进展
摘要
大陆下地壳是地球深部最重要的层圈结构之一,是壳幔物质发生交换和相互作用的直接场所.麻粒岩是大陆下地壳的主要组成物质,其成岩模式和组成特点对于更好地理解大陆下地壳的性质、形成和演化具有重要的意义.流体是下地壳内非常活跃的一种介质,不仅会对下地壳内许多性质产生显著影响,还可能对麻粒岩的成因和下地壳的形成方式有重要制约.麻粒岩在某种程度上可以看作是大陆下地壳的代名词,变质作用造成的麻粒岩组成上的许多特点,如亏损生热元素(HPE)和大离子亲石元素(LILE)等,被广泛地认为是影响下地壳化学成分的直接因素.文中综述了近些年来对大陆下地壳、麻粒岩和流体作用的若干进展和三者之间日趋突出的争议和问题,结合对中国东部一些典型产地产出的麻粒岩捕虏体/地体麻粒岩中主要组成矿物(斜方辉石,单斜辉石,斜长石和石榴石)的Fourier变换红外光谱(FTIR)分析结果,指出这些矿物中的结构水可能构成了大陆下地壳内最重要的水储库.这些水的存在和发现,可能为研究下地壳内的流体活动、麻粒岩相变质作用和大陆下地壳的一些典型的地球物理学特征(如地震活动和电导率异常现象)提供新的途径,同时也表明大陆下地壳内的许多地质作用过程和原先的一些认识都可能要重新评估.
引文
1 Christensen NI, Mooney WD. Seismic velocity structure and composition of the continental crust-A global view. Journal of Geophysical Research-Solid Earth, 1995, 100(B6): 9761 -9788
    2 Rudnick RL, Fountain DM. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 1995, 33(3): 267-309
    3 Rudnick RL, Gao S. Composition of the continental crust. In: Rudnick RL, eds. The Crust. 2003, Oxford: Elsevier-Perga-mon, 1 - 64
    4 Rudnick RL. Xenoliths-Samples of the Lower Continental Crust. Amsterdam: Elsevier, 1992, 269-316
    5 Downes H, Dupuy C, Layreloup AF. Crustal evolution of the Hercynian belt of Western Europe: Evidence from lower-crustal granulitic xenoliths (French Massif Central). Chemical Geology, 1990, 83: 209-231
    6 Rudnick RL. Nd and Sr isotopic composition of lower crustal xenoliths from north Queensland, Australia: Implications for Nd model ages and crustal growth processes. Chemical Geology, 1990, 83: 195-208
    7 Rudnick RL, McLennan SM, Taylor SR. Large ion lithophile elements in high-pressure granulite facies terrains. Geochimica Et Cosmochimica Acta, 1985, 49: 1645-1655
    8 Williams Q, Hemley RJ. Hydrogen in the deep earth. Annual Review of Earth and Planetary Sciences, 2001, 29: 365-418
    9 Hyndman RD, Vanyan LL, Marquis G, et al. The origin of e-lectrically conductive lower continental crust-saline water or graphite? Physics of the Earth and Planetary Interiors, 1993, 81(1-4): 325-344
    10 Touret JLR, LILE-depletion in granulites: myth or reality? In: Demaiffe D, ed. Petrology abd Geochemistry of Magmatic Suites of Rocks in the Continental and Oceanic Crusts, Dordrecht: Kluwer, 1996, 53-72
    11 Valley JW, Bohlen SR, Essene EJ, et al. Metamorphism in the Adirondacks: II. The role of fluids. Journal of Petrology, 1990, 31: 555-596
    12 Yardley BWD, Valley JW. The petrologic case for a dry lower crust. Journal of Geophysical Research, 1997, 102: 12723-12185
    13 Taylor SR, Mclennan SM. The geochemical evolution of the continental crust. Reviews of Geophysics, 1995, 33(2): 241 -265
    14翟明国,刘文军.麻粒岩的形成及其对大陆地壳演化的贡献.岩石学报,2001,17(1):28—38
    15 Ito K. Seismogenic layer, reflective lower crust, surface heat flow and large inland earthquakes. Tectonophysics, 1999, 306: 423-433
    16 Hofmann PF. United plateds of America, the birth of a craton. Annual Review of Earth and Planetary Sciences, 1988, 16: 543-603
    17 Taylor SR. Growth of planetary crusts. Tectonophysics, 1989, 161: 147-156
    18 Lustrino M. How the delamination and detachment of lower crust can influence basaltic magmatism. Lithos, 20051 72: 21-38
    19 Rudnick RL, Taylor SR. The composition and petrogenesis of the lower crust: A xenolith study. Journal of Geophysical Research, 1987, 92: 13981-14005
    20 Condie KC. Mafic crustal xenoliths and the origin of the lower continental crust. Lithos, 1999, 46(1): 95-101
    21 Rudnick RL. Making continental crust. Nature, 1995, 378 (6557): 571-578
    22 Shankland TJ, Ander M E. Electrical conductivity, temperatures and fluids in the lower crust. Journal of Geophysical Research, 1983, 88: 527-538
    23 Haak V, Hutton R. Electrical resistivity in continental lower crust. Geological Society, 1986, 24(Special Publication): 35-49
    24 Jones AG, Electrical conductivity, temperatures and fluids in the lower crust. In: Fountain DM, Arculus RJ, Kay RW, eds. Continental Lower Crust, Amsterdam: Elsevier, 1992, 81-143
    25 Bahr K, Bantin M, Jantos C, et al. Electrical anisotropy from electromagnetic array data: Implications for the conduction mechanism and for distortion at long periods. Physics of the Earth and Planetary Interiors, 2000, 119: 237-257
    26 Hermance JF. Electrical conductivity models of the crust and mantle. In: Ahrens T J ed. Global Earth Physics: A Handbook of Physical Constants. Washington, DC: American Geophysical Union, 1995, 190-205
    27 Duba AG, Heikamp S, Meurer W, et al. Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity. Nature, 1994, 367: 59-61
    28 Gough DI. Seismic reflectors, conductivity, water and stress in the continental crust. Nature, 1986, 323: 143-144
    29 Yardley BWD. Is there water in the deep continental crust? Nature, 1986, 323: 111
    30 Wannamaker PE. Comment on "The petrologic case for a dry lower crust" by Yardley BWD, Valley JW. Journal of Geophysical Research, 2000, 105(B3): 6057-6064
    31 Yardley BWD, Valley JW. Reply. Journal of Geophysical Research, 2000, 105(B3): 6065-6068
    32 Marquis G, Hyndman RD. Geophysical support for aqueous fluids in the deep crust: Seismic and electrical relationships. Geophysical Journal International, 1992, 110: 91-105
    33 Simpson F. Stress and seismicity in the lower continental crust: A challenge to simple ductility and implications for electrical conductivity mechanisms. Surveys in Geophysics, 1999, 20(3-4): 201-227
    34 Simpson F. Fluid trapping at the brittle-ductile transition re-ex- amined. Geofluids, 2001, 1: 123-136
    35 Glover PWJ. Graphite and electrical conductivity in the lower continental crust: A review. Physics and Chemistry of The Earth, 1996, 21(4): 279-287
    36 Frost BR, Fyfe WS, Tazaki K, et al. Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust. Nature, 1989, 340: 134-136
    37 Freund F, On the electrical conductivity structure of the stable continental crust. Journal of Geodynamics, 2003, 35(3): 353-388
    38 Stesky RS, Brace WF. Eletrical conductivity of serpentinised rocks to 6 kbars. Journal of Geophysical Research, 1973, 98: 4301-4310
    39 van Zijl JSV. The relationship between the deep electrical resistivity structure and tectonic provinces in southern Africa. Part 1: Results obtained by Schlumberger soundings. Transactions of the Geological Survey of South Africa 1978, 81: 129-142
    40 Hyndman RD, Shearer PM. Water in the lower continental crust: Modelling magnetotelluric and seismic reflection results. Geophysical Journallnternational, 1989, 98: 343-365
    41 Glover PWJ, Vine FJ. Electrical conductivity of carbon-bearing granulite at raised temperatures and pressures. Nature, 1992, 360: 723-726
    42 Duba A, Shankland TJ. Free carbon and electrical conductivity in the Earth's mantle. Geophysical Research Letters, 1982, 9: 1271-1274
    43 Glover PWJ, Vine FJ. Electrical conductivity of the continental crust. Geophysical Research Letters, 1994, 21(22): 2357-2360
    44 Katsube JT, Mareschal M. Petrophysical model of deep electrical conductors: Graphite lining as a source of its disconnection due to uplife. Journal of Geophysical Research, 1993, 98: 8019-8030
    45杨晓志,夏群科,于慧敏,等.大陆下地壳高电导率的起源:矿物中的结构水.地球科学进展,2006,21(1):31—38
    46 Mooney WD, Brocher TM. Coincident seismic reflection/refraction studies of the continental lithosphere: A global review. Reviews of Geophysics, 1987, 25: 723-742
    47 Warner M. Free water and seismic reflectivity in the lower continental crust. Journal of Geophysics and Engineering, 2004, 1(1): 88 - 101
    48 Fountain DM, Salisbury MH. Exposed cross-sections through the continental crust: Implications for crustal structure, petrology and evolution. Earth and Planetary Science Letters, 1981, 56: 263-277
    49 Hall J. The physical properties of layered rocks in deep continental crust. In: Dawson JB, Carswell DA, Hall J, et al. eds. The Nature of the Lower Continental Crust, Vol. 24. London: Geological Society, Special Publication, 1996, 51-62
    50 Reston TJ. Evidence for shear zones in the lower crust offshore Britain. Tectonics, 1988, 7: 929-945
    51 Christensen NI. Reflectivity and seismic properties of the deep continental crust. Journal of Geophysical Research, 1989, 94: 17793-17804
    52 Juhlin C. Interpretation of the reflections in the Siljan Ring area based on the results from the Gravberg-1 borehole. Tectono-physics, 1990, 173: 345-360
    53 Warner M. Basalts, water or shear zones in the lower continental crust? Tectonophysics, 1990, 173: 163-174
    54 Suetnova E, Carbnell R, Smithson S. Magma in layering at the moho of the basin and range of Nevada. Geophysical Research Letters, 1993, 20: 2945-2948
    55 Mooney WD, Meissner R. Multi-genetic origin of crustal reflectivity: A review of seismic reflection profiling of the continental lower crust and Moho. In: Fountain DM, Arculus R, Kay RW. eds. Continental Lower Crust, New York: Elsevier. 1992, 45-80
    56 Jones AG. MT and reflection: An essential combination. Geophysical Journal of the Royal Astronomical Society, 1987, 898: 7-18
    57 Simpson F, Warner M. Coincident magnetotelluric, P-wave and S-wave images of the deep continental crust beneath the Weardale granite, NE England: Seismic layering, low conductance and implications against the fluids paradigm. Geophysical Journal International, 1998, 133(2): 419-434
    58 Meissner R, Strehlau J. Limits of stresses in the continental crust and their relation to the depth-frequency distribution of shallow earthquakes. Tectonics, 1982, 1, 73-89
    59 Ambeh WB, Fairhead JD. Regular deep seismicity beneath Mt Cameroon volcano: Lack of evidence for tidal triggering. Geophysical Journal International, 1991, 106: 287-291
    60 Nyblade AA, Langston CA. East African earthquakes below 20 km depth and their implications for crustal structure. Geophysical Journal International, 1995, 121: 49-62
    61 Bryant AS, Jones LM. Anomalously deep crustal earthquakes in the Ventura Basin, Southern California. Journal of Geophysical Research, 1992, 97: 437-447
    62 Arvidsson R, Kulhanetz O. Seismodynamics of Sweden deduced from earthquake focal mechanisms. Geophysical Journal International, 1994, 116: 377-392
    63 Anderson H, Webb T, Jackson J. Focal mechanisms of large earthquakes in the South Island of New Zealand: Implications for accommodation of Pacific-Australia plate motion. Geophysical Journal International, 1993, 115: 1032-1054
    64 Melis NS, Burton PW, Brooks M. Coseismic crustal deformation from microseismicity in the Patras area, W. Greece. Geo- physical Journal International, 1995, 122: 815-836
    65 Camelbeeck T, Iranga MD. Deep crustal earthquakes and active faults along the Rukwa Trough, E. Africa. Geophysical Journal International, 1996, 124: 612-630
    66 Smalley RJ, Isacks BL. Seismotectonics of thin-and thick-skinned deformation in the Andean Forland from local network data: Evidence for a seismogenic lower crust. Journal of Geophysical Research, 1990, 95, 12487-12498
    67 Lund MG, Austrheim H, Erambert M. Earthquakes in the deep continental crust-insights from studies on exhumed high-pressure rocks. Geophysical Journal International, 2004, 158(2): 569-576
    68 Shudovsky GN, Cloetingh S, Stein S, et al. Unusually deep earthquakes in East Africa: Constraints on the thermo-mechani-cal structure of a continental rift system. Geophysical Research Letters, 1987, 14: 741-744
    69 Stein RS. The role of stress transfer in earthquake occurrence. Nature, 1999, 402: 605-609
    70 Meade C, Jeanloz R. Deep-focus earthquakes and recycling of water into the Earth. Science, 1991, 252: 68-72
    71 Zhang JF, Green II HW, Bozhiiov K, et al. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust. Nature, 2004, 428: 633-636
    72 Bird P. Initiation of intracontinental subduction in the Himalayas. Journal of Geophysical Research, 1978, 83(B10): 4975-4987
    73 Bird P. Continental delamination and Colorado Plateau. Journal of Geophysical Research, 1979, 84(B13): 7561-7571
    74 Houseman GA, McKenzie DP, Molnar P. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. Journal of Geophysical Research, 1981, 86(B7): 6115-6132
    75 Arndt NT, Goldstein SL. An open boundary between lower continental crust and mantle: Its role in crust formation and crustal recycling. Tectonophysics, 1989, 161: 201-212
    76 Kay RW, Kay SM. Creation and destruction of lower continental crust. Geologische Rundschau, 1991, 80(2): 259-278
    77 Nelson KD. A unified view of craton evolution motivated by recent deep seismic reflection and refraction results. Geophysical Journal International, 1991, 105: 25-35
    78 Gao S, Zhang BR, Jin ZM, et al. How mafic is the lower continental crust? Earth and Planetary Science Letters, 1998, 161(1-4): 101-117
    79 Gao S, Rudnick RL, Yuan HL, et al. Recycling lower continental crust in the North China craton. Nature, 2004, 432(7019): 892-897
    80 Meissner R, Mooney W. Weakness of the lower continental crust: A condition for delamination, uplift, and escape. Tec- tonophysics, 1998, 296(1-2): 47-60
    81 Alfonso JC, Ranalli G. Crustal and mantle strengths in continental lithosphere; is the jelly sandwich model obsolete? Tec-tonophysics, 2004, 394: 221-232
    82 Kay RW, Kay SM. Delamination and delamination magmatism. Tectonophysics, 1993, 219: 177-189
    83 Kay SM,Coira B, Viramonte J. Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, central Andes. Journal of Geophysical Research, 1994, 99(B12): 24323-24339
    84 Fyfe WS. The granulite facies, partical melting and the Arche-an crust. Philosophical Transactions of the Royal Society of London, 1973, A273: 457-462
    85 Furlong KP, Fountain DM. Continental crustal underplating consideration and seismic-petrologic consequences. Journal of Geophysical Research, 1986, 91(B8): 8285-8294
    86 Touret JLR. The significance of fluid inclusions in metamorphic rocks. In: Fraser DG. ed. Thermodynamics in Geology. Dordrecht: Reidel Pub Co 1977, 203-227
    87 Touret JLR. Fluid inclusions in high grade meamorphic rocks. In: Short Course in Fluid Inclusions: Applications to Petrology, Hollister LS, Crawford ML. eds. Calgary: Min Assoc Canada, 1981, 182-208
    88 Newton RC, Smith JV, Windley BF. Carbonic metamorphism, granulites and crustal growth. Nature, 1980, 288: 45-50
    89 Thompson AB. Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. American Journal of Science, 1982, 282: 1567-1595
    90 Grant JA. Phase equilibria in partial melting of pelitic rocks. In: Ashworth JR. ed. Migmatites. Blackie: Glasgow, 1985, 86-144
    91 Newton RC. Metamorphic fluids in the deep crust. Annual Review of Earth and Planetary Sciences, 1989, 17: 385-412
    92 Hansen EC, Newton RC, Janardhan AS. Pressures, temperatures and metamorphic fluids across an unbroken amphibolite facies to granulite facies transition in southern Karnataka, India. In: Kroner A, Hanson GN, Goodwin AM, eds. Archaean Geochemistry: The Origin and Evolution of the Archaean Continental Crust. Berlin: Springer Verlag, 1984, 160-181
    93 Lamb WM, Valley JW. Metamorphism of reduced granulites in low-CO2 vapor-free environment. Nature, 1984, 321: 56-58
    94 Lamb WM, Valley JW. C-O-H fluid calculations and granulite genesis. In: Tobi AC, Touret JLR, eds. The Deep Proterozoic Crust in the North Atlantic Provinces. Dordrecht: D. Reidel, 1985, 119-131
    95 Frost BR, Frost CD. CO2 , melts and granulite metamorphism. Nature, 1987, 327: 503-506
    96 Cartwright L, Valley JW. Oxygen-isotope geochemistry of the Scourian complex, northwest Scotland. Journal of the Geological Society, London, 1992, 149: 115-125
    97 Taylor SR, McLennan SM. Origin and evolution of the Earth's continental crust. AGSO-Journal of Australian Geology and Geophysics, 1997, 17: 55-62
    98 Rudnick RL, Presper T. Geochemistry of intermedidate-to high pressure granulites. In: Vielzeuf D, Vidal P. eds. Granulites and Crustal Evolution, Norwell: Kluwer Academic, 1990, 523-550
    99 Cesare B, Meli S, Nodari L, et al. Fe3 + reduction during bio-tite melting in graphitic metapelites: Another origin of CO2 in granulites. Contributions to Mineralogy and Petrology, 2005, 149: 129-140
    100 Thompson AB. Fluid absent metamorphism. Journal of the Geological Society, 1983, 140(4): 533-547
    101 Rollinson HR, Tarney J. Adakites-the key to understanding LILE depletion in granulites. Lithos, 2005, 79: 61-81
    102 Ferry JM, Gerdes ML. Chemically reactive fluid flow during metamorphism. Annual Review of Earth and Planetary Sciences, 1998, 26: 255-287
    103 Ague JJ. Fluid flow in the deep crust. In: Rudnick RL, ed. The Crust. Oxford: Elsevier-Pergamon, 2003, 195-228
    104 Young ED. Fluid flow in metamorphic environments. Reviews of Geophysics, 1995, S33: 41-52
    105 Peacock SM. Fluid proceses in subduction zones. Science, 1990, 248: 329-337
    106 Etheridge MA, Wall VJ, Cox SF, et al. High fluid pressure during regional metamorphism and deformation. Journal of Geophysical Research, 1984, 89: 4344-4358
    107 Etheridge MA, Wall VJ, Vernon RH. The role of the fluid phase during regional metamorphism and deformation. Journal of Metamorphic Geology, 1983, 1: 205-226
    108 Peacock SM. Numerical constraints on rates of metamorphism, fluid production, and fluid flux during regional metamorphism. Geological Society Of America Bulletin, 1983, 101 : 476-485
    109 Rumble D. Evidences for fluid flow during regional metamorphism. European Journal of Mineralogy, 1989, 33: 267-309
    110 Ferry JM. A historical review of metamorphic fluid flow. Journal of Geophysical Research, 1994, 99: 15487-15498
    111 Ague JJ. Deep crustal growth of quartz, kyanite, and garnet into large aperture, fluid-filled fractures, north-eastern Connecticut. Journal of Metamorphic Geology, 1995, 13: 299-314
    112 Person M, Baumgartner L. New evidence for long-distance fluid migration within the Earth's crust. Reviews of Geophysics, 1995, S33: 1083-1091
    113 Hanson RB. Hydrodynamics of regional metamorphism due to continental collision. Economical Geology, 1997, 92: 880-891
    114 Rumble D,Spear FS. Oxygen-isotope equilibration and permea- bility enhancement during regional metamorphism. Journal of the Geological Society, London, 1983, 140: 619-628
    115 Kohn MJ, Valley JW. Oxygen isotope constraints on metamor-phic fluid flow, Townshend Dam, Vermont, USA. Geochimica Et Cosmochimica Acta, 1994, 58: 5551-5566
    116 Rice JM, Ferry JM. Buffering, infiltration, and the control of intensive variables during metamorphism. American Journal of Science, 1982, 277: 1-24
    117 Rumble D. Stable isotope fractionation during metamorphic devolatilization reactions. Reviews of Mineralogy, 1982, 10: 327 - 353
    118 Shi P, Saxena SK. Thermodynamics modeling of the C-H-O-S fluid system. American Mineralogist, 1992, 77 : 1038-1049
    119 Wickham SM. Fluids in the deep crust-petrological and isotopic evidence. In: Fountain DM, Arculus RJ, Kay RW. eds. Continental Lower Crust. New York: Elsevier, 1992, 391-421
    120 Markl G, Bucher K. Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks. Nature, 1998, 391: 781 - 783
    121 Aranovich LY, Newton RC. Experimental determination of CO2-H2O activity-composition relations at 600-1000℃and 6-14 kbar by reversed decarbonation and dehydration reactions. American Mineralogist, 1999, 84: 1319-1332
    122 Kerrick DM, Jacobs GK. A modified Redlich-Kwong equation for H2O, CO2, and H2O-CO2 mixtures at elevated temperatures and pressures. American Journal of Science, 1981, 281: 735-767
    123 Sterner SM, Pitzer KS. An equation of state for carbon dioxide valid from zero to extreme pressures. Contributions to Mineralogy and Petrology, 1994, 117: 362-374
    124 Bailey RC. Trapping of aqueous fluids in the deep crust. Geophysics Research Letters, 1990, 17: 1129-1132
    125 Frost BR, Bucher K. Is water responsible for geophysical a-nomalies in the deep continental-crust-a petrological perspective. Tectonophysics, 1994, 231(4): 293-309
    126 Van den Kerkhof AM, Heinb 1 F. Fluid inclusion petrography. Lithos, 2001, 55: 27-47
    127 Parkhomenko EI. Electrical resistivity of minerals and rocks at high temperature and pressure. Reviews of Geophysics, 1982, 20: 193-218
    128 Bell DR, Rossman GR. Water in Earth's mantle: The role of nominally anhydrous minerals. Science, 1992, 255: 1391-1397
    129 Thompson AB. Water in the Earth's upper mantle. Nature, 1992, 358: 295-302
    130 Ingrin J, Skogby H. Hydrogen in nominally anhydrous upper-mantle minerals: Concentration levels and implications. European Journal of Mineralogy, 2000, 12(3): 543-570
    131 Bolfan-Casanova N. Water in the Earth's mantle. Mineralogi-cal Magazine, 2005, 69: 229-257
    132杨晓志,夏群科,盛英明,等.安徽女山下地壳麻粒岩包体中的水:红外光谱分析.岩石学报,2005,21(6):1669—1676
    133樊棋诚,隋建立,张宏福,等.汉诺坝地区下地壳与壳-幔过渡带岩石波速实验研究.自然科学进展,2002,12:1094-1097
    134樊棋诚,张宏福,隋建立,等.岩浆底侵作用与汉诺坝现今壳-幔边界组成.中国科学,D辑,2005,35(1):1-14
    135樊祺诚,刘若新.汉诺坝玄武岩中高温麻粒岩捕虏体.科学通报,1996,41(3):235-238
    136樊祺诚,刘若新,李惠民,等.汉诺坝捕虏体麻粒岩锆石年代学与稀土元素地球化学.科学通报,1998,43(2):133-137
    137黄小龙,徐义刚.安徽女山麻粒岩包体的地球化学特征:下地壳组成及其构造属性初探.地球化学,2002,31(5):443—454
    138黄小龙,徐义刚,刘敦一,等.安徽女山早元古代下地壳:新生代碱性玄武岩中麻粒岩包体锆石SHRIMP U-Pb年龄证据.科学通报,2003,48(10):1082-1086
    139黄小龙,徐义刚,王汝成,等.安徽女山麻粒岩包体:矿物学特征、下地壳地温曲线及其成因意义.岩石学报,2002,18 (3):383—391
    140高山,Rudnick R,Carlson RW,等.华北克拉通岩石圈地幔置换作用和壳幔生长耦合的Re-Os同位素证据.地学前缘, 2003,10:61—67
    141 Karato S. Mapping water content in the upper mantle, In: Eiler J, ed. Inside the Subduction Factory. Washington D C, Am Geophys Union, Monograph, 2003, 138-152
    142 Zuber MT. Folding a jelly sandwich. Nature, 1994, 371: 650-651
    143 Handy MR, Brun JP. Seismicity, structure and strength of the continental lithosphere. Earth and Planetary Science Letters, 2004, 223: 427-441

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心