相关多点地震动合成HOP方法的分析与改进
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
解释了相关多点地震动合成的HOP方法具有局部场地收敛性,分析了其生成各点地震动幅值相差较大的原因。除第一点外,HOP方法生成的各点地震动自功率谱围绕真实值波动,导致某些频率的能量过大而某些频率变小。由于结构频谱的离散性,如果恰好与能量大的频率吻合,则会激发结构强烈的振动响应,反之结构的响应值偏小,这与实际不符;进行非线性响应计算时或因为某些频率能量过大而使结构进入非线性阶段,则响应的期望值也是错误的。通过对实际地震波传播机制的模拟,提出了改进的HOP的方法。算例表明,此方法具有局部场地收敛性,各点自功率谱吻合给定的目标值,进而保证了各点幅值的一致性,可以用于结构抗震非线性响应分析。
This article shortly reviews the HOP methods for generating artificial spatially correlative time histories of multi-point ground motions,proves its local convergence and analyzes the reason for the large difference between the amplitude of different point.In HOP method,the artificial acceleration is just a sample of a random variable, so its auto-power spectrum is related to the random phase angle of every frequency component,which eventually leads to a fluctuation around the true value.Although the mathematical expectation of the artificial acceleration is correct,the resulting nonlinear seismic response of structure is incorrect.Through the actual mechanism of seismic wave propagation simulation,an improved method of HOP is proposed.Examples show that this method has a convergence at local sites.All points from the power spectrum of the target in line with the given points ensure the consistency of amplitude.This method can be used for the non-linear seismic response analysis.
引文
[1]Zhang Y H,Li Q S,Lin J H,et al.Random vibration analysis of long-span structures subjected to spatially varying ground motions[J].Solid Dynamics and Earthquake Engineering,2009,29:620-629.
    [2]Shama A A.Simplified procedure for simulating spatially correlated earthquake ground motions[J].Engineering Structures,2007,29:248-258.
    [3]Burdette N J,Elnashai A S,Luppoi A,et al.Effect of asynchronous earthquake motion on complex bridgeⅠmethodology and input motion[J].Journal of Bridge Engineering,2008,13(2):153-165.
    [4]李杰.自锚式悬索桥地震非线性时程响应分析和简化方法研究[D].成都:西南交通大学,2007.
    [5]夏友柏,王年桥,鄢常舒.多点地震动时程人工合成[J].解放军理工大学学报,2002,3(3):50-53.
    [6]Pachakis D,Katafygiotis L S,Zerva A.Amplitude variability in simulated incoherent seismic ground motions[J].Journal of Engineering Mechan-ics,2007,133(7):844-848.
    [7]Shinozuka M.Digital simulation of random processes and its applications[J].Journal of Sound and Vibration,1972,25(1):111-128.
    [8]Hao Hong,Oliverira C S,Penzien J.Multiples-station ground motion processing and simulation base on SMART-1arry data[J].Nuclear Engi-neering and Design,1989,111:293-310.
    [9]Oliverira C S,Hong Hao,Penzien J.Ground motion modeling for multiple-input structural analysis[J].Structural Safety,1991,10:79-93.
    [10]屈铁军,王前信.空间相关多点地震动合成(Ⅰ)基本公式[J].地震工程与工程振动,1998,18(1):8-15.
    [11]屈铁军,王前信.空间相关多点地震动合成(Ⅱ)合成实例[J].地震工程与工程振动,1998,18(2):25-32.
    [12]赵岩.桥梁抗震的线性非线性分析方法研究[D].大连:大连理工大学,2003.
    [13]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [14]刘先明,叶继红,李爱群.空间相关多点地震动合成的简化方法[J].工程抗震,2003,3:30-36.
    [15]董汝博,周晶,冯新.一种考虑局部场地收敛性的多点地震动合成方法[J].振动与冲击,2007,26(4):5-9.
    [16]董汝博,周晶,冯新.非平稳空间相关多点地震动合成方法研究[J].地震工程与工程振动,2007,27(3):10-16.
    [17]Dodds C J,Robson J D.Partial coherence in multivariate random process[J].Journal of Sound and Vibration,1975,42(2):243-249.
    [18]全伟.大跨桥梁多维多点地震反应分析研究[D].大连:大连理工大学,2008.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心