垦71地区多波采集方法研究及应用效果
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
多年来,胜利探区多波多分量地震采集所得资料的信噪比和分辨率较低,无法取得较好的应用效果.为此,以胜利垦71区块为先导实验区开展了多波采集方法研究.首先,通过单点三分量检波器与常规检波器小面积组合分析了该区转换波发育情况,认为该区转换界面较强,转换波特征明显,转换横波速度约为纵波速度的1/2;然后,通过数字三分量检波器的室内各种组合研究,进行了超线元叠加,由此可以有效地改善资料的信噪比,并对分辨率基本没有影响;最后,利用三分量检波器扩展排列进行转换波最佳偏移距的设计,通过垂直排列追踪放炮进行最佳非纵距设计,从而得出该区多波采集的最佳观测系统参数.通过上述合理的设计和多项试验研究,在垦71地区多波采集中,数字检波器Z分量剖面的频率优势非常明显,分辨率明显高于常规检波器的纵波剖面,对于搞清小断层及微幅度构造具有重要的意义;同时,转换横波能量强、信噪比和分辨率高,使多波采集取得了较好的效果.
The S/N ratio and resolution of multi-wave multi-component seismic acquisition in Shengli prospect area are both lower several years,so the applied effect is not good.Therefore,we study the multi-wave acquisition techniques in Ken 71 area as the leading tentative zone.First,by analyzing the distribution of converted-wave with the help of single three-component geophone and conventional receivers area arrays,we obtain that the reflection of the converted interface is strong,and the feature of converted-wave is obvious,and the ratio of VS/VP is about 1/2;then,by doing the various array analysis of digital three-component geophone in laboratory,we stack the super-bins,and effectively improve the S/N ratio with little effect on resolution;finally,we use extended array of three-component geophone to design the optimum offset for converted-wave and use tracing shot perpendicular to the array to design the optimum off-line distance,and obtain the optimum layout parameters of multi-wave acquisition in the area.With the above reasonable design and various experiment studies in Ken 71 area,we obtain that the resolution of Z component section for digital geophone is obviously higher than that of P wave section for conventional receiver,which has great meanings for the identification of mini-fault and micro-structure; meanwhile,the strong energy of the converted waves,high S/N ratio and resolution make we acquire preferable effect in multi-wave acquisition.
引文
[1]Caldwell J.Marine multicomponent seismology[J].The Lead-ing Edge,1999,18(11):1274~1282.
    [2]Gaiser James,Moldoveanu Nick.Multicomponent technology:the players,problems,applications,and trends[J].TheLeading Edge,2001,20(9):974~977.
    [3]Mujis R,Robertsson J O A,Holliger K,Data-driven adaptivedecomposition of multicomponent seabed recordings[J].Geo-physics,2004,69,1329~1337.
    [4]Donald N B,Alexander S C,John M N,GX Technology.VectorFidelity of Land Multicomponent Measurements in the Context ofthe Earth-Sensor System:Misconceptions and Implications[J].SEG/Houston 2005 Annual Meeting,904~908.
    [5]Thomas L D.Multicomponent seismology-The next wave[J].Ge-ophysics,2001,66(1):49.
    [6]张永刚,等.目前多分量地震勘探中的几个关键问题[J],地球物理学报,2004,47(1):151~155.Zhang Y G,et al.Some key problems in the multi2componentseismic exploration[J].Chinese Journal of Geophysics,2004,47(1):151~155.
    [7]张树林,夏斌,何家雄.海上多波多分量地震采集技术的应用——以莺歌海盆地为例[J].天然气地球科学,2005,16(1):103~107.Zhang S L,Xia B,He J X.The offshore multi-waves and muliti-components seismic acquisition technique——a case study ofYinggehai Basin[J].Natural Gas Geoscience,2005,16(1):103~107.
    [8]黄中玉,谈大龙,徐亦鸣.三分量数字检波器在ZY油田应用效果分析[J].地球物理学进展,2006,21(1):173~178.Huang Z Y,Dan D L,Xu Y M.Application analysis ofthree2component digital sensor in ZY oil f ield[J].Progress in Ge-ophysics,2006,21(1):173~178.
    [9]刘洋,等.转换波地震勘探中的最大炮检距设计[J].勘探地球物理进展,2005,28(3):178~182,211.Liu Y,et al.Determination of maximum offset in converted-waveseismic exploration[J].Process in Exploration Geophysics,2005,28(3):178~182,211.
    [10]胡天跃,张广娟,赵伟,等.多分量地震波波场分解研究[J].地球物理学报,2004,47(3):504~508.Hu T Y,Zhang G J,Zhao W,et al.Decomposition of multicom-ponent seismic wavefileds[J].Chinese Journal of Geophysics.(inChinese),2004,47(3):504~508.
    [11]董敏煜.多波多分量地震勘探[M].北京:石油工业出版社,2002.Dong M Y.Multi-wave multi-component seismic exploration[M].Beijing:Petroleum Industry Press,2002.
    [12]姚姚.多波地震勘探的发展历程和趋势展望[J].勘探地球物理进展,2005,28(3):169~173.Yao Y.The history and outlook of multi-wave seismic survey[J].Process in Exploration Geophysics,2005,28(3):169~173.
    [13]霍全明,等.一种经济高效的三维三分量观测系统设计方法[J].石油地球物理勘探,2004,39(5):501~504.Huo Q M,et al.An economic and efficient method for 3D,3Cgeometry design[J].Oil Geophysical Prospecting,2004,39(5):501~504.
    [14]徐丽萍,杨勤勇.多波多分量地震技术发展与展望[J].勘探地球物理进展,2002,25(3):47~52.Xu L P,Yang Q Y.On the development and prospect of multi-wave multicomponent seismology[J].Process in Exploration Ge-ophysics,2002,25(3):47~52.
    [15]王光杰,阵东,赵爱华.多波多分量地震勘探技术[J].地球物理学进展,2000,15(1):54~61.Wang G J,Chen D,Zhao D H.Multi-component seismic explo-ration[J].Progress in Geophysics,2000,15(1):54~61.
    [16]田晓红.多波多分量地震勘探的现状与进展[J].大庆石油地质与开发,2005,24(4):94~97.Tian X H.Status Quo and Further Development of Multibandand Multicomponent Seismic Exploration[J].Petroleum Geology&Oilfield Development in Daqing,2005,24(4):94~97.
    [17]Thoms L.Davis.Multicomponent seismology-The next wave[J].Geophysics,2001,66(1):49.
    [18]Paul F A,Louis C,David Gray F,Veritas.A proposed workflowfor reservoir characterization using multicomponent seismic data[J]:SEG/Houston 2005 Annual Meeting,991~995.
    [19]Kirtland G,Cheadle M G S,Miao X,Zhu T.A velocity analysisprocedure for multicomponent data with topographic variations:74th Annual International Meeting[J].SEG,Expanded Ab-stracts,873~876.
    [20]Roche S,Wagaman M,Watt H.Anadarko Basin survey showsvalue of multicomponent acquisition[J].First Break,2005,23,43~51.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心