松散沉积物中活动断层的微观探测方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
松散沉积物中的活动断层常常看不到明显的宏观形迹,构成所谓的隐性断层。单靠探槽和天然露头的宏观观测,常常难以得到全面的认识。因此,开拓松散沉积物中活动断层探测的新思路和新方法是当前的迫切任务。本研究试图另辟蹊径从微观的角度解决这个问题。为此,观测了北京顺义—前门—良乡断裂、太原交城断裂、乌鲁木齐王家沟断裂和西山断裂以及西安临潼—长安断裂的24条探槽和天然露头剖面,采集原态样品140件,散状样品122件,切制大薄片275件。对所采集的样品开展了显微构造、显微沉积学以及扫描电镜(SEM)测定。研究结果表明,松散沉积物中的断层在微观上是有迹可循的,它们可以表现为变形条带、变形条带的带、滑动面、较宽的断层带、微破碎带、碎屑颗粒集中的带和铁质有机质集中的带等。断层内外样品在碎屑颗粒的棱角度、粒度大小、粒度分布特征以及表面结构特征等均有所变化。观测结果还发现了可以和震击物(seismites)的宏观构造标志相互对比的微观标志。显然,上述显微构造和显微沉积学特征可以作为松散沉积物中宏观形迹不明(隐形)断层及其是否伴有古地震事件的微观判断标志。总之,研究结果表明,微观探测是研究松散沉积物中活动断层具广阔应用前景的有效手段。
Active faults in soft sediments usually do not have distinct macroscopic appearance, forming so-called obscured faults.Therefore, active faults in soft sediments cannot be identified thoroughly through macroscopic observations of trenches or natural outcrops across the faults.Obviously, it is necessary to develop a new method for the identification of active faults in soft sediments.An attempt to identify active faults in soft sediments through microscopic observations has been made in this study.For this purpose, a total of 24 trenches and natural outcrops across the Shunyi-Qianmen-Liangxiang Fault in Beijing, Jiaocheng Fault in Taiyuan, Wangjiagou and Xishan Faults in rümqi, and Lintong-Chang'an Fault in Xi'an have been observed.During the observations, 140 samples were collected by using sampling boxes to preserve their original state, from which 275 large thin sections were cut in the lab, and 122 samples of dispersed particles were also collected at the same position.Microstructural, micro-sedimentologic and SEM observations were carried out on all the samples collected.The results show that the obscured faults in soft sediments can be identified distinctly under microscope.Microscopically, they may appear as slip surfaces, deformation bands, zone of deformation bands, relatively wide micro-fault zones, micro-shutter zones, filled tension cracks, zones of concentrated clastic grain and zones of concentrated ferruginous materials or organics.The angularity, grain-size, grain-size distribution and surface textures of the clastic grains from the samples collected on the fault plane and outside are significantly different.Microstructural observations have revealed several microstructures comparable well with macroscopic structures indicative of seismites, such as balls-and-pillows structure, load structure, fluid flow, mass flow, truncation surface and floatation of organics.Obviously, the afore-mentioned microstructural and micro-sedimentologic features can be used as the microscopic indicators of obscured faults in soft sediments, as well as for the indicators of whether the faulting process is accompanied by seismic event.The results of this study, therefore, indicate that microscopic observation is an effective approach to the identification of active faults in soft sediments.
引文
[1]Deng Q D.Progress and development trends of active faultresearch[M]∥Institute of Geology,China Earthquake Ad-ministration.Research on active fault(1).Beijing:Seismo-logical Press,1991:1-6(in Chinese).
    [2]Bonilla M G,Lienkaemper J J.Factors affecting the recogni-tion of faults exposedin exploratory trenches[M].U S Geo-logical Survey Bulletin,1991:1-50.
    [3]Chao H T.Microstructural indicators of active faults and their applications to determine the invisible faults in Quater-nary unconsolidated sedi ments[D].Beijing:Institute of Geol-ogy,China Earthquake Administration,1998:139(in Chi-nese).
    [4]Chao H T,Deng Q D,Li J L.Characteristics of microstruc-tures of theinvisible faultsin Quaternary unconsolidated sedi-ments[J].Seismology and Geology,2000,22(2):147-154(in Chinese).
    [5]Chao HT,Deng Q D,Li J L,et al.Microstructural research method of slip surface of active faultsin Quaternary unconsol-idated sedi ments[J].Earthquake Research in China,2001,17(4):349-355(in Chinese).
    [6]Aydin A.Small faults formed as deformation bands in sand-stone[J].Pure Appl Geophys,1978,116:913-930.
    [7]Aydin A,Johnson A M.Development of faults as zones of deformation bands and as slip surfaces in sandstone[J].Pure Appl Geophys,1978,116:931-942.
    [8]Underhill J R,Woodcock N H.Faulting mechanismin high-porosity sandstones:New Red Sandstone,Arran Scotland[M]∥Jones ME,Preston R MF.Deformation of sedi ments and sedi mentary rocks.Geol Soc London,Spec Publication29.1987:91-105.
    [9]Guiraud M,Seguret M.Soft-sedi ment microfaulting related to compaction within the fluvio-deltaic infill of the Scoria strike slip basin(northern Spain)[M]∥Jones M E,Preston R M F.Deformation of sedi ments and sedi mentary rocks.Geol Soc London,Spec Publication29.1987:123-136.
    [10]Antonelini M,Aydin A.Microstructures of deformation bands in porous sandstone at Arches National Park,Utah[J].Jour Struc Geol,1994,16:941-959.
    [11]Cashman S,Cashman K.Cataclasis and deformation band formation in unconsolidated marine-terrace sand,Hamboldt County,California[J].Geology,2000,28:111-114.
    [12]Rawling G C,Goodwin L B.Cataclasis and particulate flow in faulted,poorly lithified sedi ments[J].Jour Struc Geol,2003,25(3):317-331.
    [13]Davatzes N C,Aydin A.Overprinting faulting mechanismin high porosity sandstone of SE Utah[J].Jour Struc Geol,2003,25(11):1795-1813.
    [14]Malt man A.Shear zonein argillaceous sedi ments—an experi-mental study[M]∥Jones ME,Preston R MF.Deformation of sedi ments and sedi mentary rocks.Geol Soc London,Spec Publication29.1987:77-87.
    [15]Mair K,Main J G,Elphick S C.Sequential development of deformation bands in the laboratory[J].Jour Struc Geol,2000,22:25-42.
    [16]Wolf H,Konig D,Triantafyllidis T.Experi mental investiga-tion of shear band pattern in granular materials[J].Jour Struc Geol,2003,25(8):1229-1240.
    [17]Hou J J,Liang H H,Zheng WT,et al.Fracturing and dis-placement types of active faults in unconsolidated accumula-tive materials and their i mplication to ti ming of paleoseismic rupture events[J].Earth Science—Journal of China Universi-ty of Geosciences,1995,20(6):697-700(in Chinese).
    [18]Dong WZ,Hou J J,Liang H H,et al.Study of the active faults on Shabanliang ridgein Datong basin andits mechanical si mulation[J].Seismology and Geology,1996,18(1):75-82(in Chinese).
    [19]Vitorri E,Labini S S,Serva L.Palaeoseismology:reviewof the state-of-the-art[J].Tectonophysics,1991,193:9-32.
    [20]Seilacher A.Fault-graded beds interpreted as seismites[J].Sedi mentology,1969,13:155-159.
    [21]Si ms J D.Determining earthquake recurrence interval from deformational structures in young lacustrine sedi ments[J].Tectonophysics,1975,29:141-152.
    [22]Hempton MR,Dewey J F.Earthquake-induced deformation-al structures in young lacustrine sedi ments,East Anatolian Fault,southern Turkey[J].Tectonophysics,1983,98:T7-T14.
    [23]Allen J R L.Earthquake magnitude,frequency,epicentral distance and soft sedi ment deformation in sedi mentary basin[J].Sedi mentary Geology,1986,46(1/2):67-75.
    [24]Davenport C A,Ringrose P S.Deformation of Scottish Qua-ternary sedi ment sequences by strong earthquake motion[M]∥Jones ME,Preston R MF.Deformation of sedi ments and sedi mentary rocks.Geol Soc London,Spec Publication29.1987:299-314.
    [25]Alvarez W,Standley E,O Conners D,et al.Synsedi mentary deformationin the Jurassic of southeastern Utah—a case of i mpact shaking[J]?Geology,1998,26:579-582.
    [26]Obermeier S F.Liquefaction evidence for strong earthquakes of Holocene and latest Pleistocene ages in the states of Indiana and Illinois,USA[J].Engineering Geology,1998,50:227-254.
    [27]Obermeier S F,Pond E C,Olson S M,et al.Paleoliquifac-tion studiesin continental settings[M]∥Ettensohn F R,Rast N,Brett C E.Ancient seismites.Geol Soc Amer Special Pa-per369.Boulder,Colorado,USA.2002:13-28.
    [28]Moretti M,Pieri P L,Tropeano M.Late Pleistocene soft-sedi ment deformation structures interpreted as seismites in paralic deposits in the city of Bari(Apulian foreland,south-ern Italy)[M]∥Ettensohn F R,Rast N,Brett C E.Ancient seismites.Geol Soc Amer Special Paper369.Boulder,Colo-rado,USA.2002:75-86.
    [29]Nettoff D.Seismogenically induced fluidization of Jurassicsands,south-central Utah[J].Sedi mentology,2002,49:65-80.
    [30]Ettensohn F R,Rast N,Brett C E.Ancient seismites[M].Geol Soc Amer Special Paper369.Boulder,Colorado,USA.2002:190.
    [31]Wu X T,Yin G X.Discovery of seismites inlate Jurassic la-custrine sedi ments from Emei Mountains,Sichuan Province and its i mplication[J].Acta Sedi mentologica Sinica,1992(1):17-26(in Chinese).
    [32]Yin G X,Tang Y Y.Petrologic evidence of seismic event in geologic history:with an example of seismite in the sedi ment of late Jurassic lakein the Emei Mountains,Sichuan Province[J].Seismology and Geology,1993,15(1):61-65(in Chi-nese).
    [33]Jiang Z X.Sedi mentology[M].Beijing:PetroleumIndustry Press,2003(in Chinese).
    [34]Hooke R L,Iverson N R.Grain-size distribution in defor-ming subglacial tills:role of grain fracture[J].Geology,1995,23(1):57-60.
    [35]Sammis C,King G,Biegel R.The kinematics of gouge de-formation[J].Pure Appl Geophys,1987,125(5):777-812.
    [36]Kanamori Y,Tanaka K,Miyakoshi K.Further studies on the use of quartz grains fromfault gouge to establish the age of faulting[J].Engineering Geology,1985,21:175-194.
    [37]Yang Z E,Hu B R,Hong HJ.Microstructural features of quartz grains in fault gouges fromactive faults and their i m-plications[J].Chinese Science Bulletin,1984,29(8):484-486(in Chinese).
    [38]Wang Y,Deonarine B.Model atlas of surface textures of quartz grains[M].Beijing:Science Press,1985:64(in Chi-nese).
    [39]Zhang R F,Yang Z E.Microgeology research in scanning electron microscopy[M].Beijing:Xueyuan Publishing House,1999:190(in Chinese).
    [40]Zhang W Y.Preface of“Fabrics and microstructures”[M]∥Carreras J,Estrada A,White S.Translated by He Y N,LinC Y,Shi L B.Fabrics and microstructures[M].Beijing:Sci-ence Press,1980:Ⅲ-Ⅳ(in Chinese).
    [1]邓起东.活动断裂研究的进展和发展方向[M]∥国家地震局地质研究所主编.活动断裂研究(1).北京:地震出版社,1991:1-6.
    [3]晁洪太.第四纪地层中活断层的显微构造标志、隐性活断层及其应用研究[D].北京:中国地震局地质研究所,1998:139.
    [4]晁洪太,邓起东,李家灵.第四纪松散沉积物中隐性活断层的显微构造特征[J].地震地质,2000,22(2):147-154.
    [5]晁洪太,邓起东,李家灵,等.第四纪松散沉积物中活断层滑动面的显微构造研究方法[J].中国地震,2001,17(4):349-355.
    [17]侯建军,梁海华,郑文涛,等.松散堆积物中活断层的破裂位移形式及其对确定古地震事件的意义[J].地球科学——中国地质大学学报,1995,20(6):697-700.
    [18]董文忠,侯建军,梁海华,等.大同盆地内砂板梁上断裂新活动及其力学实验模拟[J].地震地质,1996,18(1):75-82.
    [31]吴贤涛,尹国勋.四川峨眉晚侏罗世湖相沉积物中震积岩的发现及其意义[J].沉积学报,1992(1):17-26.
    [32]尹国勋,汤友谊.地史时期地震事件的岩石学证据:以四川峨眉晚侏罗世湖相沉积中的震积岩为例[J].地震地质,1993,15(1):61-65.
    [33]姜在兴.沉积学[M].北京:石油工业出版社,2003.
    [37]杨主恩,胡碧茹,洪汉净.活断层中断层泥的石英碎砾显微构造特征及其意义[J].科学通报,1984,29(8):484-486.
    [38]王颖,迪纳瑞尔B.石英砂表面结构模式图集[M].北京:科学出版社,1985:64.
    [39]张汝藩,杨主恩.扫描电镜与微观地质研究[M].北京:学苑出版社,1999:190.
    [40]张文佑.“组构和显微构造”序言[M]∥Carreras J,Estrada A,White S.何永年,林传勇,史兰斌,译.组构和显微构造.北京:科学出版社,1980:Ⅲ-Ⅳ.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心