彭州通济地区水文地球化学特征及成因分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
彭州地区是"5.12"地震灾区,其震后的水文地球化学特征还未有相关研究,本文利用以热力学为基础的水文地球化学平衡理论与方法对彭州通济地区震后浅层地下水化学特征及其形成进行了分析,为研究地震对浅层地下水的影响提供基础信息。分析表明:研究区水化学场受到地形地貌的控制,水化学类型以HCO3--Ca型为主;HCO3-、Ca2+普遍含量较高,CO2分压控制碳酸盐的溶解度及水中的pH值;其浅层地下水相对于石英处于过饱和状态,相对于非晶质SiO2处于未饱和状态,CO2气体参与硅酸盐矿物水解,产生可溶SiO2;矿物溶解及与水中化学组分平衡的非硅铝酸盐矿物主要为方解石,硅铝酸盐矿物主要为长石,其次是高岭石、蒙脱石。水化学平衡理论与方法可以较好的用于研究地下水所处的水文地球化学环境以及判断SiO2的来源和矿物溶解过程。
Pengzhou is one of the seismic disastrous areas during "5.12" earthquake.Related research on the hydro-geochemical characteristics of Pengzhou has not been done after the earthquake.Hydro-geochemistry equilibrium theory and method,based on the thermodynamic,are used in analyzing the shallow ground-water of Tongji area in this study,which shows that the groundwater chemical field of study area is controlled by topography.The concentrations of HCO3-and Ca2+ are high in most study area,so the main hydro-geochemical type is HCO3-Ca type.Carbonate solubility and pH value are controlled by CO2 partial pressure.Quartz is oversaturated in shallow groundwater,and amorphous SiO2 is not saturated,CO2 is involved in hydrolysis of silicate minerals,producing soluble SiO2.Calcite is the main non-aluminosilicate mineral in mineral dissolution and water chemical equilibrium,and feldspar is the main aluminosilicate minerals,followed by kaolinite and montmorillonite.Hydro-geochemistry equilibrium theory and method are suitable for the study of groundwater hydro-geochemistry environment and determining the source of SiO2 and mineral dissolution proccess.
引文
[1]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1993.
    [2]华北平原典型区浅层地下水化学特征及可利用性分析[J].水利科学与工程技术,2008,(2):56-59.
    [3]R.A.弗里泽,J.A.彻里.地下水[M].北京:地震出版社,1987.
    [4]王永利,贾疏源,张成江等.多元统计在雅砻江某电站水文地质调查中的应用[J].物探化探计算技术,2004,26(4):331-336.
    [5]黄奇波,汪玉松,刘秀明.汤兜地区水文地球化学特征及成因分析.地下水,2008,30(6):6-8.
    [6]吕金波,车用太,王继明等.京北地区热水水文地球化学特征与地热系统的成因模式[J].地震地质,2006,28(3):419-429.
    [7]刘建刚,吴顺华,郑克勋.基于活度计算的碳酸平衡研究[J].水利科学进展,2004,15(5):640-642.
    [8]李义连,王焰新,周来茹等.地下水矿物饱和度的水文地球化学模拟分析——以娘子关泉域岩溶水为例[J].地质科技情报,2002,21(1):32-361.
    [9]林茂炳,苟宗海,吴山等.龙门山地质考察指南[M].成都:成都科技大学出版社,1997.
    [10]王大纯,张人权,史毅虹等.水文地质学基础[M].北京:地质出版社,1995.
    [11]钱会,马致远.水文地球化学[M].北京:地质出版社,2005.
    [12]Y.Tardy.Characterization of the principal weathering types by thegeochemistry of waters from European and African crystalline mas-sifs[J].Chem Geol,1971,7:253-271.
    [13]张永爱,王爱玲.高含硅地下水成因的热力学分析[J].地下水,1995,17(4):147-148.
    [14]曹玉清,胡宽2,李振拴.地下水化学动力学与生态环境区划分[M].北京:科学出版社,2009.
    [15]W.斯塔姆,J.J.摩尔根.水化学-天然水体化学平衡导论[M].北京:科学出版社,1987.
    [16]B.K.Kortatsi,Y.S.A.Anku,G.K.Anornu.Characterizationand appraisal of facets influencing geochemistry of groundwater inthe Kulpawn sub-basin of the White Volta Basin,Ghana[J].En-viron Geol,2009,58:1349-1359.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心