青藏高原西缘班公错地区新构造运动特征
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
青藏高原西缘的班公错地区是青藏高原西构造结的典型区域,更是研究青藏高原中更新世以来构造活动、地貌演化和环境演变的重要区域。依据野外调查结果,借助卫星遥感影像的解译和数字高程模型地形地貌特征的分析,对该地区的新构造运动特征以及其与地形地貌特征的耦合进行了研究。研究结果显示,研究区地貌分区特征以中大起伏山地(地势起伏度500~2 500 m)地貌为主,平原、台地少有发育;班公错地区断层走向分为近EW向、NW向、NE向和NNE向4组,其中近EW向为主体,断陷盆地多具有拉分断陷特征;区内晚新生代地层发育,尤其第四纪冲洪积物和湖积物广泛展布,并受断层的控制具有线性发育特征,湖积阶地和冲洪积阶地发育,班公错北岸乌奖附近拔湖高度62 m、65 m、98 m的沉积阶地钙质堆积物年龄为(23.8±2.3)、(33.9±4.0)、(78.0±8.0)万年;区内地震频发,1970年以来的40年间,4级以上地震达到303次,其中6级以上强震达到7次。众多地质事实指示该地区的中更新世以来为较强烈的、阶段性快速构造抬升和剧烈的剥蚀作用、动荡的构造环境。
Bangong Lake area in western margin of the Qinghai-Tibet Plateau is a typical part of the western syntaxis,and also is the important region of research on the Qinghai-Tibet Plateau's tectonic movement,geomorphic evolution and environmental changes since the Middle Pleistocene.Based on the results of geological surveys,by means of the satellite remote sensing image interpretation and the analysis of digital elevation models,this paper mainly studies the brief characteristics of neotectonics and its coupling with the terrain and geomorphic features of the area.The results indicate that Bangong Lake area's faults can be divided into four groups which are nearly EW,NW,NE and NNE,in those,nearly EW is the main fault,and most of these fault basins have the features of pull-apart.Late Cenozoic stratigraphy grows in the region,particularly the Quaternary alluvial-diluvial fans and lake sediments widely distribute,which are linearly developed and controlled by the faults,and lacustrine and alluvial terraces are also developed,which indicate the period of tectonic uplift in the region.The isotopic ages of calcitic sediments are(238±23) kaBP,(339±40) kaBP,(780±80) kaBP on the terraces with heights of 62 m,65 m and 98 m above lake level near Wujiang at the north bank of Bangong Lake.The earthquakes occurred frequently in this area.According to the statistics,the magnitude of 303 earthquakes are more than Ms 4.0 and 7 earthquakes of those are more than Ms 6.0 since 1970.The topography and geomorphology characteristics of the study area are mainly middle-large undulating mountain(500-2,500 m terrain undulation).Plains and plateaus also less developed,which indicates that the stronger erosion of surface leveling process associating with the crust tectonic uplift since the Middle Pleistocene.
引文
[1]Searle M P.Geological evidence against large-scale pre-Holoceneoffsets along the Karakoram fault:implications for the limited ex-trusion of the Tibetan Plateau[J].Tectonics,1996,15:171-186.
    [2]Lacassin R,Valli F,Arnaud N,et al.Large-scale geometry,off-set and kinematic evolution of the Karakorum fault,Tibet[J].Earth and Planetary Science Letters,2004,219:255-269.
    [3]Valli Franck.Décrochements lithosphériques dans L'Ouest duplateau du Tibet:Geométrie,age,décalages cumulés et vitessede glissement long-terme sur la Failli du Karakorum[D].Parsé:UniversitéParis,2005.
    [4]Matte P,Tapponnier P,Amaud N,et al.Tectonics of WesternTibet,between the Tarim and the Indus[J].Earth and Planeta-ry Science Letters,1996,142:311-330.
    [5]Murphy M A,Yin An,Kapp P,et al.Southward propagation ofthe Karakoram fault system,southwest Tibet:Timing and magni-tude of slip[J].Geology,2000,28:451-454.
    [6]Phillips R J,Parrish R R,Searle M P.Age constraints on ductiledeformation and long-term slip rates along the Karakoram faultzone,Ladakh[J].Earth and Planetary Science Letters,2004,226:305-319.
    [7]Liu Qing.Paléoclimates et contraintes chronologiques sur les mou-vements récents dans L'oust du Tibet:failles du Karakorum et deLongmu Co-Gozha Co,lacs en pull-apart de Longmu Co et deSumxi Co[D].Parsé:UniversitéParis,1993.
    [8]Gaudemee Y,Tapponier P,Turcotte D L.River offsets across ac-tive strike-slip faults[J].Tectonics,1989,3:55-76.
    [9]Brown E T,Bendick R,Bourlés D L,et al.Slip rates of theKarakoram fault,Ladakh,India,determined using cosmic rayexposure dating of debris flows and moraines[J].Journal of Geo-physical Research,2002,107(9):ESE7-1-ESE7-13.
    [10]李海兵,Franck Valli,许志琴,等.喀喇昆仑断裂的变形特征及构造演化[J].中国地质,2006,33(2):239-255.
    [11]陈兆恩,林秋燕.青藏高原湖泊涨缩的新构造运动意义[J].地震,1993,1:31-52.
    [12]Jia Yulian,Shi Yafeng,Wang Sumin,et al.Lake-expandingevents in the Tibetan Plateau since 40 kaBP[J].Science inChina:Series D,2001,44:301-314.
    [13]张绪教,李团结,陆平,等.卫星遥感在西藏安多幅1∶25万区域第四纪地质调查中的应用[J].现代地质,2008,22(1):107-115.
    [14]李德威.青藏高原及邻区三阶段构造演化与成矿演化[J].地球科学:中国地质大学学报,2008,33(6):723-742.
    [15]李德威.青藏高原隆升机制新模式[J].地球科学:中国地质大学学报,2003,28(6):593-600.
    [16]Li Dewei.Temporal-spatial structure of intraplate uplift in theQinghai-Tibet Plateau[J].Acta Geologica Sinica,2010,84(1):105-134.
    [17]刘静,丁林,曾令森,等.青藏高原典型地区的地貌量化分析——兼对高原“夷平面”的讨论[J].地学前缘,2006,13(5):285-299.
    [18]刘少峰,王陶,张会平,等.数字高程模型在地表过程研究中的应用[J].地学前缘,2005,12(1):303-309.
    [19]涂汉明,刘振东.中国地势起伏度最佳统计单元的求证[J].湖北大学学报:自然科学版,1990,12(3):266-271.
    [20]周立虎,程维明,钱金凯,等.中国陆地1∶100万数字地貌分类体系研究[J].地球信息科学学报,2009,11(6):707-724.
    [21]肖序常,王军.青藏高原构造演化及隆升的简要评述[J].地质论评,1998,44(4):372-381.
    [22]江万,莫宣学,赵崇贺,等.矿物裂变径迹年龄与青藏高原隆升速率研究[J].地质力学学报,1998,4(1):13-18.
    [23]吴珍汉,吴中海,胡道功,等.青藏高原古大湖与夷平面的关系及高原面形成演化过程[J].现代地质,2009,23(6):993-1002.
    [24]李德威.东昆仑、玉树、汶川地震的发生规律和形成机理:兼论大陆地震成因与预测[J].地学前缘,2010,17(5):179-192.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心