沙牌坝址基岩场地地震动输入参数研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
重大水利水电工程地震动输入参数必须根据专门的地震危险性分析结果来确定。目前由地震危险性分析得到的一致概率反应谱具有包络的意义,不能反映实际地震的频谱特性,输入"一致概率反应谱"可能导致地震作用偏大;拟合设计反应谱人工生成地震动加速度时程的频率非平稳性也没有得到很好解决。为了解决这些问题,得到与坝址地震危险性一致、具体地震的输入参数,结合沙牌大坝提出了一套适用于重大水利水电工程基岩场地地震动输入参数确定方法:通过以有效峰值加速度为参数的概率地震危险性计算分析,确定坝址不同超越概率下的有效峰值加速度及对坝址贡献最大的潜在震源区;在最大贡献潜在震源内利用震级空间联合分布概率最大法确定坝址设定地震,依据加速度反应谱衰减关系确定与坝址设定地震对应的设计反应谱;根据设定地震结果和时变功率谱模型参数衰减关系确定时变功率谱,将时变功率谱和最小相位谱按三角级数叠加法进行强度和频率非平稳地震加速度时程合成。在对沙牌坝址区域的地震活动性及地震构造环境分析评价的基础上,采用上述方法,得到了坝址基岩场地不同超越概率下的有效峰值加速度、设计反应谱、强度和频率非平稳地震加速度时程等地震动输入参数。
There are many limitations for important hydraulic project's rock site at present,such as envelopment effects of probability-consistent response spectrum,and frequency stationarity in acceleration time history,etc..In order to overcome those shortcomings,a new method of determination of ground motion input parameters for important hydraulic project's rock site has been put forward in this study.The effective peak acceleration with different exceeding probability,as well as the dominant potential seismic source which had the largest contribution to the site,have been determined by using probabilistic seismic hazard analysis,which based on effective peak acceleration.The magnitude of scenario earthquake within the dominant potential earthquake sources is determined by the largest probability of magnitude-spatial joint distribution,and the corresponding design response spectra is determined by the attenuation relationship of acceleration response spectra.Then evolutionary power spectrum is gained according to scenario earthquake and the attenuation relationships of evolutionary power spectrum model parameters,and the amplitude and frequency non-stationary acceleration time history at dam site are synthesized by using trigonometric series superposition method,which based on evolutionary power spectra and minimum phase spectrum.In a case study of Shapai dam site,based on the evaluation of regional seismic activities and seismotectonic environment,ground motion input parameters at dam rock site with different exceeding probability,including the effective peak acceleration,design response spectra,amplitude and frequency non-stationarity acceleration time history,are determined.
引文
[1]国家地震安全性评定委员会,全国地震标准化技术委员会.GB18306-2001中国地震动参数区划图[S].北京:中国标准出版社,2001.
    [2]四川省地震局工程地震研究所.汶川沙牌水电站工程场地地震危险性概率分析及场地地震动参数确定报告[R].成都:四川省地震局工程地震研究所,1999.
    [3]国家地震安全性评定委员会,全国地震标准化技术委员会.GB18306-2001中国地震动参数区划图国家标准第1号修改单[S].北京:中国标准出版社,2008.
    [4]中国水利水电科学研究院.SL203-97水工建筑物抗震设计规范[S].北京:中国电子出版社,1997.
    [5]中国水利水电科学研究院.DL5073-2000水工建筑物抗震设计规范[S].北京:中国电子出版社,2000.
    [6]陈厚群,郭明珠.重大工程场地设计地震动参数选择[C]//中国水利水电科学研究院会议文集.北京:[出版者不详],2002:552-568.
    [7]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [8]胡聿贤.中国院士书系——地震工程[M].石家庄:河北教育出版社,2000.
    [9]HANKS T C.b value andω-γseismic source models:implications for tectonic stress variation along active crustal fault zones and the estimation of high-frequency strong ground motion[J].Journal of Geophysical Research,1979,84(B5):2235-2242.
    [10]卢寿德.GB17741-2005工程场地地震安全性评价[S].北京:中国标准出版社.2005.
    [11]CONTE J P.Effects of earthquake frequency non-stationary on inelastic structural response[C]//Proceed-ings of the10th World Conference on Earthquake Engineering.Madrid,Spain:[s.n.],1992:3645-3651.
    [12]苏栋,李相崧.地震作用下自由场中饱和砂土的应力-应变推导[J].岩土力学,2010,31(1):277-281,308.SU Dong,LI Xiang-song.Derivation of stress and strain of saturated sand in free ground under seismic loading[J].Rock and Soil Mechanics,2010,31(1):277-281,308.
    [13]颜可珍,刘能源,夏唐代.基于判别分析法的地震砂土液化预测研究[J].岩土力学,2009,30(7):2049-2052.YAN Ke-zhen,LIU Neng-yuan,XIA Tang-dai.Dis-criminant analysis model for prediction of sand soil liquefaction during earthquake[J].Rock and Soil Mechanics,2009,30(7):2049-2052.
    [14]GOUPILLAUD P,GROSSMANN A,MORLET J.Cycle-octave and related transforms in seismic signal analysis[J].Geoexploration,1984,23(1):85-102.
    [15]HUANG NE,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London.London:[s.n.],1998:903-995.
    [16]GOTO H,SUGITO M,KAMEDA H,et al.Prediction of nonstationary earthquake motions for moderate and Great earthquakes on rock surface[R].Annuals Disaster Prevention Research Institute.Japan:Kyoto University,1984:19-48.
    [17]SUGITO M,FURUMOTO Y,SUGIYAMA,T.Strong motion prediction rock surface by superposed evolutionary spectra[C]//Proceedings of the12th World Conference on Earthquake Engineering.New Zealand:[s.n.],2000.
    [18]ISHIKAWA Y,KAMEDA H.Hazard-consistent magnitude and distance for extended seismic risk analysis[C]//Proceedings of the9th World Conference on Earthquake Engineering.Tokyo,Japan:[s.n.],1988:89-94.
    [19]胡聿贤.地震安全性评价技术教程[M].北京:地震出版社,1999.
    [20]钟菊芳.重大工程场地地震动输入参数研究[博士学位论文D].南京:河海大学,2006.
    [21]GONI JUAN JOSE.Simulation of earthquake ground acceleration using a seismological model of the Fourier amplitude spectrum and its minimum phase spectrum[D].U.S.A.:Tulane University,1989.
    [22]徐锡伟,闻学泽,叶建青,等.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,2008,30(3):597-629.XU Xi-wei,WEN Xue-ze,YE Jian-qing,et al.The Ms8.0Wenchuan earthquake surface ruptures and its seicsmogenic structure[J].Seismology and Geology,2008,30(3):597-629.
    [23]中国地震局地震预测研究所,中国地震灾害防御中心.四川省岷江紫坪铺水利枢纽工程场地地震安全性评价复核报告[R].成都:中国地震局地震预测研究所,2008.
    [24]俞言祥.长周期地震动衰减关系研究[博士学位论文D].北京:中国地震局地球物理研究所,2002.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心