基于聚类和最大似然法的汶川灾区泥石流滑坡易发性评价
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
选择坡度、相对高差、地表径流深和地震烈度4个震后地质灾害的主控因素作为评价影响因子,采用聚类分析和最大似然法评价汶川极重灾区(四川省部分)震后地质灾害的易发性。结果表明:聚类分析和最大似然法这种非监督分类的方法适用于没有足够训练数据的情况,可以快速对一个大区域的地质灾害易发性进行评估;从得到的易发性评价图中可知,在大块的高易发区内存在一些小的极低易发区,这些区域可以作为安全的居民点使用,在极高易发区和高易发区以及高易发区与极低易发区分界线附近,地质灾害点分布比较密集。
Cluster analysis and Maximum Likelihood Classification(MLC) methods are introduced to map the susceptibility of post-quake geo-hazards in the Ms 8.0 Wenchuan earthquake area.Four variables including slope gradient,relative relief,seismic intensity and surface runoff are chosen as predominant factors of the susceptibility mapping.The mapping result shows that this approach has the advantage of rapid evaluation,and is applicable even when there is short of training data.Five kinds of susceptibility(very low,low,moderate,high,and extreme high) are assigned to the study area by virtue of expert experience and geo-hazard density.The final map gives a reasonable assessment of susceptibility of post-earthquake geo-hazards in the area.It is found that there exist safety spots within the region of high danger,which are suitable for habitations and facilities.Moreover,the hazard density near the boundaries between extreme high and high regions,or high and very low regions is larger than other regions.
引文
[1]Cui P,Chen X Q,Zhu Y Y,et al.The Wenchuan Earth-quake(May 12,2008),Sichuan Province,China,andresulting geohazards[J].Nat Hazards,2011,56(1):19-36
    [2]黄润秋,李为乐.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报,2008,27(12):2585-2592
    [3]Dai Fuchu,Lee C F.Landslide characteristics and slopeinstability modeling using GIS,Lantau Island,HongKong[J].Geomorphology,2002,42:213-228
    [4]Lin M L,Tung C C.A GIS-based potential analysis ofthe landslides induced by the Chi-Chi earthquake[J].Eng Geol,2004,71:63-77
    [5]Kamp U,Growley B J,Khattak G A,et al.GIS-basedlandslide susceptibility mapping for the 2005 Kashmirearthquake region[J].Geomorphology,2008,101:631-
    [6]Carrara A,Crosta G,Frattini P.Comparing models ofdebris-flow susceptibility in the alpine environment[J].Geomorphology,2008,94:353-378
    [7]Carrara A,Cardinali M,Detti R,et al.Gis techniquesand statistical-models in evaluating landslide hazard[J].Earth Surf Proc Land,1991,16:427-445
    [8]Jade S,Sarkar S.Statistical-models for slope instabilityclassification[J].Eng Geol,1993,36:91-98
    [9]Jiang H,Eastman J R.Application of fuzzy measures inmulti-criteria evaluation in GIS[J].Int J Geogr Inf Sci,2000,14:173-184
    [10]Van Westen C J,Rengers N,Soeters R.Use of geomor-phological information in indirect landslide susceptibilityassessment[J].Nat Hazards,2003,30:399-419
    [11]Lee S,Ryu J H,Min K D,et al.Landslide susceptibilityanalysis using GIS and artificial neural network[J].EarthSurf Proc Land,2003,28:1361-1376
    [12]Lan H X,Zhou C H,Wang L J,et al.Landslide hazardspatial analysis and prediction using GIS in the Xiaojiangwatershed,Yunnan,China[J].Eng Geol,2004,76:109-128
    [13]Ercanoglu M.Landslide susceptibility assessment of SEBartin(West Black Sea region,Turkey)by artificial neu-ral networks[J].Nat Hazard Earth Sys,2005,5:979-992
    [14]He Y P,Beighley R E.GIS-based regional landslide sus-ceptibility mapping:a case study in southern California[J].Earth Surf Proc Land,2008,33:380-393
    [15]李勇,黄润秋,周荣军,等.龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报,2009,17(1):3-18

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心