油藏地球物理技术发展与实践——纪念《油气地球物理》创刊10周年
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
中国东部油区多为陆相复杂油气藏,大多经历了近50年的开发,平均采收率仅为30%,剩余油潜力依然很大。如何最大限度地开采剩余油气资源,大幅提高地球物理资料的分辨能力,准确建立油藏地质模型、搞清剩余油分布是关键。由于井间信息少、多解性大,常规技术建立的油藏模型精度低、确定性差,不能满足油田精细开发的需求。国内外的单项研究实践表明,破解制约油田高效开发的这一技术瓶颈,必须充分挖掘和利用地球物理信息,发展能够在三维空间有效识别剩余油富集区的油藏地球物理技术。该技术是一项综合运用多种地球物理方法对油藏进行精细研究的集成配套技术。其主要技术思路是,以岩石物理、高精度三维地震、多波地震、井中地震等关键技术为基础,突破井孔地震高分辨率处理与解释技术,实现井地地球物理资料联合拓频与反演,完成综合地球物理资料约束的确定性构造、储层和流体的精准建模,大幅提高油气采收率,实现油田高效开发。
The most of the reservoirs are non-marine reservoirs in the oil producing regions in the east of China. The majority of the reservoirs have been developed for fifty years and the average recovery ratio is only 30%, but the potential of remaining oil is still very large. How to greatly improve the resolution of the geophysical data and maximize the recovery of the remaining oil, a key to the settlement of the question lies exactly in establishing a reservoir geologic model and get a clear understanding of the distribution of the remaining oil. The low precision reservoir model established by using the traditional techniques has less crosswell information and multiple solutions that do not meet the requirements of the fine development of Shengli Oilfield. The domestic and foreign research practices show that the way to solve the problem is to fully exploit the use of the geophysical information and develop reservoir geophysics technologies to effectively identify the remaining oil enrichment zone in 3D space. The main technological thinking is that the borehole seismic high precision processing and interpretation techniques are improved based on the petrophysics, high precision 3D seismic, multi wave, borehole seismic and so on, and taking it as a bridge to fulfill the joint extension frequency and inversion of the borehole-surface geophysical data, furthermore, to build the precise structure and reservoir and fluid models constrained by integrated geophysics, greatly improve the recovery ratio and effectively develop the oilfield.
引文
[1]《胜利油田地球物理技术进展与实践2005-2011年》,ISBN978-7-5021-9190-0,北京:石油工业出版社,2012.
    [2]孔庆丰,王延光,左建军等.井间地震有限角度叠加方法研究与应用[J].石油地球物理勘探,2007,42(3):256-258.
    [3]左建军.Wavetracing层析成像方法及其在井间地震中的应用[J].勘探地球物理进展,2005,29(5):329-332.
    [4]魏国华.井间地震POSTMAP偏移成像研究及应用[J].勘探地球物理进展,2006,29(5):322-325.
    [5]Jing Du*,Songhui Lin,2011,The application of polarizing filtering with floating coordinate system in3D3C VSP wavefield separation,81th Annual International Meeting,SEG,Expanded Abstracts,4314-4318.
    [6]王延光.起伏地表叠前逆时深度偏移与并行实现[J].石油地球物理勘探,2012,47(2):266-271.
    [7]BI Li-Fei,QIAN Zhong-Ping,ZHANG Feng,CHEN Xiao-Yan,HAN Shi-Chun,Mark Chapman;Application of seismic anisotropy fluid detection technology in the Ken71well block of Shengli Oilfield,APPLIED GEOPHYSICS,2011,Vol8(2):117-124.
    [8]Satinder Chopra.High-frequency restoration of surface seismic data[J].The Leading Edge,2003,22(8):730-738.
    [9]夏吉庄.井间地震资料拟露头技术研究与应用[J].石油物探,2011,50(2):150-154.
    [10]R.A.Behrens and T.T.Tran.“Incorporating Seismic Data of Intermediate Vertical Resolution Into Three-Dimensional Reservoir Models:A New Method”,SPE Reservoir Eval.&Eng.,Vol.2,No.4,August1999:325-333.
    [11]夏吉庄,吕德灵,杨宏伟等.基于多尺度地球物理资料的流体预测技术[J].石油地球物理勘探,2011,46(2):293-298.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心