中地壳断层带内微裂隙愈合与高压流体形成条件的模拟实验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
中地壳断层带内发现的接近静岩压力的高压流体能够合理解释汶川MS8.0级地震断层的高角度逆冲滑动,而高压流体的产生与断层带的微裂隙愈合紧密相关.利用熔融盐固体介质三轴高温高压实验系统,我们采用含水和烘干的Carrara大理岩样品开展了微裂隙愈合实验,研究中地壳断层带内高压流体的形成条件.实验分为三类:A类、A+B类和A+B+C类,其中A阶段实验在室温条件下将样品压裂,形成一系列共轭破裂面,B阶段实验在600℃、围压700MPa和应变速率10-6s-1条件下愈合了A阶段破碎的样品,实验样品从以碎裂变形为主向以韧性变形为主转变,C阶段实验通过快速降低轴压模拟一个扩容过程,再以相同实验条件重新加载样品,通过比较实验样品强度来检验样品的愈合程度.样品显微结构和实验样品强度表明,动态重结晶作用能够愈合微裂隙和孔隙,水能促进矿物的动态重结晶作用,较高的水含量和较大的应变有利于微裂隙和孔隙的愈合,从而有利于高压流体的形成.
Sublithostatic pore fluid pressure in faults cutting the middle crust is considered to trigger slip on the high-angle reverse fault slip for the Wenchuan Ms8.0 earthquake,the mechanism of which is suggested to be related to crack healing.We conducted microcrack healing experiments on Carrara marble samples with different water contents to reveal the formation conditions of high pore fluid pressure using a molten-cell solid medium triaxial apparatus under high temperature and pressure.The experiments were designed to be three types as A,A+B and A+B+C,respectively.All the samples were fractured at room temperature in phase A,leading to conjugate fractures as the result of brittle deformation,and then healed at a constant temperature of 600 ℃,confining pressure of 700 MPa and a strain rate of 10-6s-1 in phase B,causing a transition from cataclastic flow to plastic deformation.Finally,we simulated a dilatation by reducing the axial stress instantaneously,and then loading again with the same strain rate to examine the degree of crack-healing by comparing the ultimate strength of stress-strain curves in phase C.The microstructures of samples after deformation and the stress-strain curves show that the dynamic recrystallization can heal the micro-cracks and pore,and the presence of water can enhance the process of the dynamic recrystallization.Our experiments suggest that higher water content and the larger strain are favorable to form high pore fluid pressure in a fault.
引文
[1]刘顺,刘树根,宋春彦等.龙门山中央断裂运动学研究.成都理工大学学报(自然科学版),2008,35(4):463-470.Liu S,Liu S G,Song C Y,et al.A study on the kinematicsof the Longmen central fault in Sichuan,China.Journal ofChengdu University of Technology(Science and TechnologyEdition)(in Chinese),2008,35(4):463-470.
    [2]胡新伟,王道永.映秀断裂带构造岩,显微构造及组构特征和形成机制讨论.成都理工学院学报,1995,22(4):54-59.Hu X W,Wang D Y.Characteristics of tectonite,microstructure and fabric and formation mechanism ofYingxiu fault zone in the middle Longmen mountains.Journal of Chengdu University of Technology(in Chinese),1995,22(4):54-59.
    [3]熊绍柏,滕吉文,尹周勋等.攀西构造带南部地壳与上地幔结构的爆炸地震研究.地球物理学报,1986,29(3):235-244.Xiong S B,Teng J W,Yin Z X,et al.Explosionseismological study of the structure of the crust and uppermantle at southern part of the Panxi tectonic belt.Chinese J.Geophys.(in Chinese),1986,29(3):235-244.
    [4]王椿镛,吴建平,楼海等.川西藏东地区的地壳P波速度结构.中国科学(D辑),2003,33(增刊):181-189.Wang C Y,Wu J P,Lou H,et al.P-wave crustal velocitystructure in western Sichuan and eastern Tibetan region.Science in China(Series D),2003,46(S2):254-265.
    [5]徐锡伟,闻学泽,叶建青等.汶川MS8.0地震地表破裂带及其发震构造.地震地质,2008,30(3):597-629.Xu X W,Wen X Z,Ye J Q,et al.The MS8.0 Wenchuanearthquake surface ruptures and its seismogenic structure.Seismology and Geology(in Chinese),2008,30(3):597-629.
    [6]李海兵,王宗秀,付小方等.2008年5月12日汶川地震(MS8.0)地表破裂带的分布特征.中国地质,2008,35(5):803-813.Li H B,Wang Z X,Fu X F,et al.The surface rupture zonedistribution of the Wenchuan earthquake(MS8.0)happenedon May 12th,2008.Geology in China(in Chinese),2008,35(5):803-813.
    [7]刘静,张智慧,文力等.汶川8级大地震同震破裂的特殊性及构造意义———多条平行断裂同时活动的反序型逆冲地震事件.地质学报,2008,82(12):1707-1722.Liu J,Zhang Z H,Wen L,et al.The MS8.0 Wenchuanearthquake co-seismic rupture and its tectonic implications———anout-of-sequence thrusting event with slip partitioned onmultiple faults.Acta Geologica Sinica(in Chinese),2008,82(12):1707-1722.
    [8]陈桂华,徐锡伟,郑荣章等.2008年汶川MS8.0地震地表破裂变形定量分析———北川—映秀断裂地表破裂带.地震地质,2008,30(3):723-738.Chen G H,Xu X W,Zheng R Z,et al.Quantitative analysisof the co-seismic surface rupture of the 2008 Wenchuanearthquake,Sichuan,China along the Beichuan-Yingxiufault.Seismology and Geology(in Chinese),2008,30(3):723-738.
    [9]付碧宏,王萍,孔屏等.四川汶川5.12大地震同震滑动断层泥的发现及构造意义.岩石学报,2008,24(10):2237-2243.Fu B H,Wang P,Kong P,et al.Preliminary study ofcoseismic fault gouge occurred in the slip zone of theWenchuan Ms8.0earthquake and its tectonic implication.Acta Petrologica Sinica(in Chinese),2008,24(10):2237-2243.
    [10]何宏林,孙昭民,王世元等.汶川MS8.0地震地表破裂带.地震地质,2008,30(2):359-362.He H L,Sun Z M,Wang S Y,et al.Rupture of the MS8.0Wenchuan Earthquake.Seismology and Geology(inChinese),2008,30(2):359-362.
    [11]李细光,于贵华,徐锡伟.汶川MS8.0地震基岩中的地表破裂.地震地质,2008,30(4):989-995.Li S G,Yu G H,Xu X W.Surface ruptures in bedrock of theMS8.0 Wenchuan earthquake.Seismology and Geology(inChinese),2008,30(4):989-995.
    [12]李传友,魏占玉.2008年汶川MS8.0地震北川以北段地表破裂变形的主要样式.第四纪研究,2009,29(3):416-425.Li C Y,Wei Z Y.Representative patterns of coseismicdeformation along surface rupture north to Beichuan city of2008 Wenchuan Ms8.0earthquake.Quaternary Sciences,2009,29(3):416-425.
    [13]Xu X W,Wen X Z,Yu G H.Coseismic reverse-and oblique-slip surface faulting generated by the 2008 Mw7.9Wenchuanearthquake,China.Geology,2009,37(6):515-518.
    [14]陈云泰,许力生,张勇等.2008年5月12日汶川特大地震震源特性分析报告.2008,http://www.csi.ac.cn/sichuan/chenyuntai.pdf.Chen Y T,Xu L S,Zhang Y,et al.Report of main-shocksource character of Wenchuan strong earthquake happened at05-12-2008.2008,http://www.csi.ac.cn/sichuan/chenyuntai.pdf.
    [15]张瑞青,吴庆举,李永华等.汶川中强余震震源深度的确定及其意义.中国科学D辑:地球科学,2008,38(10):1234-1241.Zhang R Q,Wu Q J,Li Y H,et al.Focal depths formoderate-sized aftershocks of the Wenchuan MS8.0earthquake and their implications.Science China EarthSciences,2008,51(12):1694-1702,doi:10.1007/s11430-008-0140-2.
    [16]朱艾澜,徐锡伟,刁桂苓等,汶川Ms8.0地震部分余震重新定位及地震构造初步分析.地震地质,2008,30(3):759-767.Zhu A L,Xu X W,Diao G L,et al.Relocation of the Ms8.0Wenchuan earthquake sequence in part:preliminaryseismotectonic analysis.Seismology and Geology(inChinese),2008,30(3):759-767.
    [17]黄媛,吴建平,张天中等,汶川8.0级大地震及其余震序列重定位研究.中国科学D辑:地球科学,2008,38(10):1242-1249.Huang Y,Wu J P,Zhang T Z,et al.Relocation of the M8.0Wenchuan earthquake and its aftershock sequence.ScienceChina Earth Sciences,2008,51(12):1703-1711.doi:10.1007/s11430-008-0135-z.
    [18]吕坚,苏金蓉,靳玉科等,汶川8.0级地震序列重新定位及其发震构造初探.地震地质,2008,30(4):917-925.LüJ,Su J R,Jin Y K,et al.Discussion on relocation andseismo-tectonics of the Ms8.0 Wenchuan earthquakesequences.Seismology and Geology(in Chinese),2008,30(4):917-925.
    [19]陈九辉,刘启元,李顺成等,汶川Ms8.0地震余震序列重新定位及其地震构造研究.地球物理学报,2009,52(2):390-397.Chen J H,Liu Q Y,Li S C,et al.Seismotectonic study byrelocation of the Wenchuan Ms8.0 earthquake sequence.Chinese J.Geophys.(in Chinese),2009,52(2):390-397.
    [20]周永胜,何昌荣.汶川地震区的流变结构与发震高角度逆断层滑动的力学条件.地球物理学报,2009,52(2):474-484.Zhou Y S,He C R.The rheological structures of crust andmechanics of high-angle reverse fault slip for Wenchuan Ms8.0earthquake.Chinese J.Geophys.(in Chinese),2009,52(2):474-484.
    [21]Sibson R H,Robert F,Poulsen K H.High-angle reversefaults,fluid-pressure cycling,and mesothermal gold-quartzdeposits.Geology,1988,16(6):551-555.
    [22]Xu Z Q,Ji S C,Li H B,et al.Uplift of the Longmen Shanrange and the Wenchuan earthquake.Episodes,2008,31(3):291-301.
    [23]嵇少丞,王茜,孙圣思等.亚洲大陆逃逸构造与现今中国地震活动.地质学报,2008,82(12):1643-1667.Ji S C,Wang Q,Sun S S,et al.Continental extrusion andseismicity in China.Acta Geologica Sinica(in Chinese),2008,82(12):1643-1667.
    [24]Küster M,Stockhert B.High differential stress andsublithostatic pore fluid pressure in the ductile regime—microstructural evidence for short-term post-seismic creep inthe Sesia Zone,Western Alps.Tectonophysics,1999,303(1-4),263-277.
    [25]Yonkee W A,Parry W T,Bruhn R L.Relations betweenprogressive deformation and fluid-rock interaction duringshear-zone growth in a basement-cored thrust sheet,Sevierorogenic belt,Utah.American Journal Science,2003,303(1):1-59.
    [26]Han L,Zhou Y S,He C R.The fluid character of deformedgranite and sublithostatic fluid pressure in the ductile shearzone along Wenchuan Earthquake Fault(Abstract).AOGS2011conference in Tapei.2011,SE83-A016.
    [27]Wintsch R P,Kvale C M,Kisch H J.Open-system,constant-volume development of slaty cleavage,and straininduced replacement reactions in the Martinsburg Formation,Lehigh Gap,Pennsylvania.Geological Society of AmericaBulletin,1991,103(7):916-927.
    [28]Wintsch R P,Yi K.Dissolution and replacement creep:asignificant deformation mechanism in mid-crustal rocks.Journal Structural Geology,2002,24(6-7):1179-1193.
    [29]Gratier J P,Favreau P,Renard F,et al.Fluid pressureevolution during the earthquake cycle controlled by fluid flowand pressure solution crack sealing.Earth Planets Space,2002,54(11):1139-1146.
    [30]Gratier J P,Favreau P,Renard F.Modeling fluid transferalong California faults when integrating pressure solutioncrack sealing and compaction processes.Journal GeophysicalResesrch,2003,108(B2):2104,doi:10.1029/2001JB000380.
    [31]Trepmann C A,Stockhert B,Dorner D,et al.Simulatingcoseismic deformation of quartz in the middle crust and fabricevolution during postseismic stress relaxation–anexperimental study.Tectonophysics,2007,442(1-4):83-104.
    [32]韩亮,周永胜,党嘉祥等.3GPa熔融盐固体介质高温高压三轴压力容器的温度标定.高压物理学报,2009,25(6):407-415.Han L,Zhou Y S,Dang J X,et al.Temperature calibrationfor 3 GPa molten salt medium triaxial pressure vessel.Chinese Journal of High Pressure Physics(in Chinese),2009,25(6):407-415.
    [33]韩亮,周永胜,何昌荣等.3GPa熔融盐固体介质高温高压三轴压力容器的围压标定.高压物理学报,2011,25(3):213-220.Han L,Zhou Y S,He C R,et al.Confined pressurecalibration for 3 GPa molten salt medium triaxial pressurevessel under high pressure and temperature.Chinese Journalof High Pressure Physics(in Chinese),2011,25(3):213-220.
    [34]Grater J P,Gueydan F.Deformation in the Presence of fluidsand mineral reactions:Effect of fracturing and fluid-rocksinteraction on seismic cycle.//Handy M R,Hirth G,Hovius N eds.Tectonic Fault:Agents of Change on aDynamic Earth.Cambridge:The MIT Press,2007:319-356.
    [35]Rybacki E,Renner J,Konrad K,et al.A servohydraulically-controlled deformation apparatus for rock deformation underconditions of ultra-high pressure metamorphism.Pure andApplied Geophysics,1998,152(3):579-606.
    [36]Aines R D,Kirby S H,Rossman G R.Hydrogen speciationin synthetic quartz.Physics and Chemistry Minerals,1984,11(5):204-212.
    [37]Aines R D,Rossman G R.Water in minerals?A peak in theinfrared.Journal Geophysical Research,1984,89(B6):4059-4071.
    [38]Skogby H,Bell D R,Rossman G R.Hydroxide in pyroxene:variations in the natural environment.Am.Mineral.,1990,75(7-8):764-774.
    [39]Skogby H,Rossman G R.OH(super-)in pyroxene:anexperimental study of incorporation mechanisms andstability.Am.Minera.l,1989,74(9-10):1059-1069.
    [40]Rossman G R.Studies of OH in nominally anhydrousminerals.Physics and Chemistry Minerals,1996,23(4-5):299-304.
    [41]Bell D R,Ihinger P D,Rossman G R.Quantitative analysisof trace OH in garnet and pyroxenes.Am.Mineral.,1995,80(5-6):465-474.
    [42]Bell D R,Rossman G R,Maldener J,et al.Hydroxide inolivine:aquantitative determination of the absolute amountand calibration of the IR spectrum.Journal of GeophysicalResearch,2003,108,doi:10.1029/2001JB000679.
    [43]Bell D R,Rossman G R,Moore R O.Abundance andpartitioning of OH in a high-pressure magmatic system:megacrysts from the Monastery Kimberlite,South Africa.Journal of Petrology,2004,45(8):1539-1564.
    [44]Bell D R,Rossman G R.Water in earth’s mantle:the role ofnominally anhydrous minerals.Science,1992,255(5050):1391-1397.
    [45]Beran A.A model of water allocation in alkali feldspar,derived from infrared spectroscopic investigations.Physicsand Chemistry Minerals,1986,13(5):306-310.
    [46]Beran A.OH groups in nominally anhydrous frameworkstructures:An infrared spectroscopic investigation of danburiteand labradorite.Physics Chemistry Minerals,1987,14(5):441-445.
    [47]Johnson E A,Rossman G R.A Survey of hydrous speciesand concentrations in igneous feldspars.Am.Mineral.,2004,89(4):586-600.
    [48]Johnson E A,Rossman G R.The concentration andspeciation of hydrogen in feldspars using FTIR and 1 H MASNMR spectroscopy.Am.Mineral.,2003,88(5-6):901-911
    [49]Libowitzky E,Beran A.IR spectroscopic characterization ofhydrous species in minerals.//Beran A,Libowitzky E.Spectroscopic methods in mineralogy.EMU Notes inMineralogy,2004,6:227-279.
    [50]Nakashima S,Matayoshi H,Yuko T,et al.Infraredmicrospectroscopy analysis of water distribution in deformedand metamorphosed rocks.Tectonophysics,1995,245(3-4):263-276.
    [51]Yamagishi H,Nakashima S,Ito Y.High temperatureinfrared spectra of hydrous microcrystalline quartz.Physicsand Chemistry of Minerals,1997,24(1):66-74.
    [52]Yanagisawa N,Fujimoto K,Nakashima S,et al.Micro FT-IR study of the hydration-layer during dissolution of silicaglass.Geochimica et Cosmochim Acta,1997,61(6):1165-1170.
    [53]Suzuki S,Nakashima S.In-situ IR measurements of OHspecies in quartz at high temperatures.Physics ChemistryMinerals,1999,26(3):217-225.
    [54]Ito Y,Nakashima S.Water distribution in low-gradesiliceous metamorphic rocks by micro-FTIR and its relation tograin size:A case from the Kanto Mountain region,Japan.Chemical Geology,2002,189(1-2):1-18.
    [55]De Meer S,Spiers C J,NakashimaS.Structure and diffusiveproperties of fluid-filled grain boundaries:An in-situ studyusing infrared(micro)spectroscopy.Earth and PlanetaryScience Letters,2005,232(3-4):403-414.
    [56]Paterson M S.The determination of hydroxyl by infraredabsorption in quartz,silicate glasses and similar materials.Bulletin de Minéralogie,1982,105:20-29.
    [57]Rybacki E,Gottschalk M,Wirth R,et al.Influence of waterfugacity and activation volume on the flow properties of fine-grained anorthite aggregates.Journal of Geophysical Research,2006,111:B03203.
    [58]Whitmeyer S J,Wintsch R P.Reaction localization andsoftening of texturally hardened mylonites in a reactivatedfault zone,central Argentina.J.Meta.Geology.,2005,23(6):411-424.
    [59]Brantley S L,Evans B,Hickman S H,et al.Healing ofmicrocracks in quartz:Implications for fluid flow.Geology,1990,18(2):136-139.
    [60]Moore J C,Saffer D.Updip limit of the seismogenic zonebeneath the accretionary prism of southwest Japan:An effectof diagenetic to low-grade metamorphic processes andincreasing effective stress.Geology,2001,29(2):183-186.
    [61]Trepmann C A,Stockhert B.Mechanical twinning of jadeite-an indication of synseismic loading beneath the brittle-plastictransition.International Journal of Earth Sciences,2001,90(1):4-13.
    [62]Trepmann C A,Stockhert B.Cataclastic deformation ofgarnet:A record of synseismic loading and postseismic creep.Journal of Structural Geology,2002,24(11):1845-1856.
    [63]Trepmann C A,Stockhert B.Quartz microstructuresdeveloped during non-steady state plastic flow at rapidlydecaying stress and strain rate.Journal of StructuralGeology,2003,25(12):2035-2051.
    [64]Ellis S,Stckhert B.Elevated stresses and creep ratesbeneath the brittle-ductile transition caused by seismic faultingin the upper crust.Journal of Geophysical Research,2004,109,B05407,doi:10.1029/2003JB002744.
    [65]Ellis S,Stockhert B.Elevated stresses and creep ratesbeneath the brittle-ductile transition caused by seismicfaulting in the upper crust.Journal of GeophysicalResearch,2004,109:B05407,doi:10.1029/2003JB002744.
    [66]Ellis S,Stockhert B.Imposed strain localization in the lowercrust on seismic timescales.Earth,Planets and Space,2004,56(12):1103-11029.
    [67]Zhang X D,Salemans J,Peach C J,et al.Compactionexperiments on wet calcite powder at room temperature:Evidence for operation of intergranular pressure solution.//De Meer S,Drury M R,de Bresser J H P,et al.Deformation Mechanisms,Rheology and Tectonics:CurrentStatus and Future Perspectives.Geol.Soc.Spec.Publ.,2002,200:29-39.
    [68]Zhang X M,Spiers C J.Compaction of granular calcite bypressure solution at room temperature and effects of porefluid chemistry.Int.J.Rock Mech.Min.Sci.,2005,42(7-8):950-960,doi:10.1016/j.ijrmms.2005.05.017.
    [69]Zhang X M,Spiers C J.Effects of phosphate ions onintergranular pressure solution in calcite:An experimentalstudy.Geochim.Cosmochim.Acta,2005,69(24):5681-5691,doi:10.1016/j.gca.2005.08.006.
    [70]Zhang X M,Spiers C J,Peach C J.Compaction creep of wetgranular calcite by pressure solution at 28℃to 150℃.Journal of Geophysical Research,2010,115:B09217,doi:10.1029/2008JB005835.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心