火山型被动大陆边缘SDR形成机理及其对烃源岩影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
火山型被动大陆边缘是在大陆分解过程中有大量地幔物质参与,并在其中起到重要作用的一种被动大陆边缘类型,典型特征是发育向海倾斜反射体(SDR)和高纵波速度体(HVZ)。由于SDR独特的地震反射特征,很容易将其与裂谷期沉积充填,特别是与湖相烃源岩地震反射特征相混淆,通过地震火山地层学的研究有助于识别SDR。西南非海岸盆地A区块位于典型的火山型被动大陆边缘,通过区域地质分析和火山岩地震相研究,并结合类比分析综合研究后认为,研究区内裂谷期主要为火山岩充填,对烃源岩有两点不利影响:1大规模发育的火山岩侵占了烃源岩沉积的可容纳空间,不利于烃源岩发育;2裂谷期大规模发育的火山岩带来的大量高温热能对烃源岩具有烘烤作用,使其在圈闭形成之前快速生烃和异常成熟,从而失去生烃能力。因此,研究区烃源岩存在巨大风险,勘探潜力较小。
Unlike sedimentary passive margins,volcanic passive margins are associated with the accretion,during continental break-up,of a thick magma crust,and characterized by seaward dipping reflectors(SDR)and high-velocity seismic zones(HVZ).The seismic resemblance of SDR sequences to lacustrine source rock is enhanced by the presence of normal faults,so these two are easily confused.Seismic volcano-stratigraphy,which is a subset of seismic stratigraphy,can be used to analyze volcanic facies imaged on seismic reflection profile,and helpful to identify SDR from lacustrine source rock.Block A is in the northern part of Southwest African Coastal Basin,which is a typical volcanic passive margin basin.On the basis of geological setting analysis,analog analysis and seismic volcano-stratigraphy analysis,we find that a rift fill of block A is mainly igneous rock,which has two adverse effects on the source rock.First,massive igneous rock takes up the accommodation space of source rock,which hampers the development.Second,massive igneous rock brings great heat,which bakes the source rock and the hydrocarbon generating ability is lost before it is trap formed.Based on these analyses,we conclude the exploration risk is very high in block A.
引文
[1]邹才能,张光亚,陶士振,等.全球油气勘探领域地质特征、重大发现及非常规石油地质[J].石油勘探与开发,2010,37(2):129-145.
    [2]曹洁冰,周祖翼.被动大陆边缘:从大陆张裂到海底扩张[J].地球科学进展,2003,18(5):730-736.
    [3]Geoffroy L.Volcanic passive margins[J].C.R.Geoscience,2005,337:1395-1408.
    [4]White R S,McKenzie D P.Magmatism at rift zones:The generation of volcanic continental margins and flood basalts[J].J.Geophys.Res.,1989,94:7685-7729.
    [5]Coffin M F,Eldholm O.Large igneous provinces:Crustal structure,dimensions,and external consequences[J].Rev.Geophys.,1994,32:21-36.
    [6]Mann P,Gahagan L,Gordon M B.Tectonic setting of the world′s giant oil and gas fields[J].AAPG,2003,78(2):15-105.
    [7]Mutter J,Talwani M,Stoffa P L.Origin of seaward-dipping reflectors in oceanic crust of the Norwegian margin by‘subaerial sea-floor spreading’[J].Geology,1982,10:353-357.
    [8]Kelemen P B,Holbrook W S.Origin of thick,high-velocity igneous crust along the U.S.East Coast Margin[J].J.Geophys.Res.,1995,100:10077-10094.
    [9]Hinz K.A hypothesis on terrestrial catastrophes wedges of very thick oceanward dipping layers beneath passive margins:Their origin and palaeoenvironement significance[J].Geologisches Jahrbuch,1981,22:345-363.
    [10]Sengor A M C,Burke K.Relative timing of rifting and volcanism on Earth and its tectonic implications[J].Geophys.Res.Lett.,1978,6:419-421.
    [11]Mutter J C,Buck W R,Zehnder C M.Convective partial melting:I.A model for the formation of thick basaltic sequences during the initiation of spreading[J].Geophysical Research,1988,93:1031-1948.
    [12]Jackson M P A,Cramez C,Fonck J M.Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins:Implications for salt tectonics and source rocks[J].Marine and Petroleum Geology,2000,17:477-498.
    [13]Palmason G.A continuum model of crustal generation in Iceland:Kinematics aspects[J].J.Geophys.,1980,47:7-18.
    [14]Planke S,Symonds P A,Alvestad E,et al.Seismic volcanostratigraphy of large-volume basaltic extrusive complexes on rifted margins[J].Geophysical Research,2000,105:19335-19351.
    [15]Planke S,Eldholm O.Seismic response and construction of seaward dipping wedges of flood basalts:Voring volcanic margin[J].Geophysical Research,1994,99:9263-9278.
    [16]Berndt C,Planke S,Alvestad E,et al.Seismic volcanostratigraphy of the Norwegian Margin:Constraints on tectonomagmatic break-up processes[J].J.Geological Society,2001,158:413-426.
    [17]王璞珺,张功成,蒙启安,等.地震火山地层学及其在我国火山岩盆地中的应用[J].地球物理学,2011,54(2):597-610.
    [18]Rey S S,Planke S,Symonds P A,et al.Seismic volcano-stratigraphy of the Gascoyne margin,Western Australia[J].Volcanology and Geothermal Research,2008,172:112-131.
    [19]江怀友,鞠斌山,江良冀,等.世界火成岩油气勘探开发现状与展望[J].特种油气藏,2011,18(2):1-6.
    [20]金强.裂谷盆地生油层中火山岩及其矿物与有机质的相互作用研究进展与展望[J].地球科学进展,1998,13(6):542-545.
    [21]Grassle J F.A Plethora of unexpected life[J].Oceanus,1988,27(4):41-46.
    [22]戴宝章,赵葵东,蒋少涌.现代海底热液活动与块状硫化物矿床成因研究进展[J].矿物岩石地球化学通报,2004,23(3):246-254.
    [23]Verati C,Donato P,Prieur D,et al.Evidence of bacterial activity from micrometer-scale layer analyses of black-smoker sulfide structures(Pito Seamount Site,Easter micro-plate)[J].Chemical Geology,1999,158:257-269.
    [24]熊寿生.火山喷溢—喷流活动与半无机成因天然气的形成和类型[J].石油实验地质,1996,18(1):13-35.
    [25]宋占东,查明,曲江秀,等.阳信洼陷火成岩对烃源岩形成及演化的作用[J].石油学报,2007,28(3):39-43.
    [26]万从礼,翟庆龙,金强.生油岩与火成岩的相互作用研究初探:有机酸对火成岩的蚀变及过渡金属对有机质演化的催化作用[J].地质地球化学,2001,29(2):46-51.
    [27]翟庆龙,金强,万从礼.裂谷盆地CO2的一种潜在成因:论火成岩与烃源岩的相互作用[J].天然气工业,2003,23(3):126-131.
    [28]万从礼,金强.东营凹陷纯西辉长岩对烃源岩异常生排烃作用研究[J].长安大学学报:地球科学版,2003,25(1):20-25.
    [29]冯乔,汤锡元.岩浆活动对油气藏形成条件的影响[J].地质科技情报,1997,16(4):59-65.
    [30]Simoneit B R T,Brenner S,Peters K E.Thermal alteration of cretaceous black shale by basaltic intrusions in the eastern Atlantic:Ⅱ.Effect on bitumen and kerogen[J].Geochem.Cosmochim.Acta,1981,45(9):1481-1502.
    [31]IHS.Southwest African Coastal Basin[R].IHS Basin Monitor,413800ovr.pdf,IHS,2011.
    [32]Nurnberg D,Muller R D.The tectonic evolution of the South Atlantic from Late Jurassic to present[J].Tectonophysics,1991,191:27-53.
    [33]于建国,韩文功,于正军,等.济阳坳陷孔店组烃源岩的地震预测方法[J].石油地球物理勘探,2005,40(3):318-322.
    [34]米立军,刘震,张功成,等.南海北部深水区白云凹陷古近系烃源岩的早期预测[J].沉积学报,2007,25(1):140-146.
    [35]张寒,朱光有.利用地震和测井信息预测和评价烃源岩:以渤海湾盆地富油凹陷为例[J].石油勘探与开发,2007,34(1):55-59.
    [36]曹强,叶加仁.南黄海北部盆地东北凹陷烃源岩的早期预测[J].地质科技情报,2008,27(4):75-79.
    [37]武爱俊,金强,王力,等.利用地震资料预测烃源岩分布特征:以霸县凹陷沙三下亚段为例[J].大庆石油地质与开发,2010,29(4):24-28.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心