多分量地震全波形弹性反演预测砂岩油藏剩余油分布
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
中国东部油田经过几十年的开采,主力油层先后进入高含水后期,但仍有相当一部分原油留存在地下。笔者依据中国东部油田原油及地层水的物性特征,分析并研究了流体黏滞性对饱和岩石剪切模量的影响以及黏滞流体剪切模量的变化规律,提出了基于Krief模型和广义Gassmann方程的剪切模量分解及油、水识别方法,并在此基础上进行油水分布预测。根据地震波场的矢量特性和东部油区陆相沉积地层特征,将全波形弹性波动方程反演方法应用于叠前多分量数据处理,获取深度域地层密度、拉梅常数和剪切模量。在大庆油田某油区2D3C地震数据的应用结果表明,利用多分量地震数据全波形弹性反演和流体剪切模量可以比较好地识别油和水,预测剩余油分布。
Although main reservoirs in old oilfields of eastern China have high water cut after decades of production,there is a considerable portion of remaining crude oils being left in the reservoirs.To identify the remaining oil distribution in these reservoirs is one of the keys problems for optimizing development programs and enhancing oil recovery.Based on previous studies on physical properties of crude oils and formation water from oilfields in eastern China,the influence of viscosity fluid on shear moduli of saturated rocks and their variation laws were discussed in detail.A method based on the Krief model and generalized Gassmann equation was proposed to extract the fluid shear modulus from shear moduli of saturated rocks(also known as the effective shear modulus) and then to identify oils and water.The effective modulus was obtained from multi-component seismic data by using full waveform inversion based on the elastic wave equation that naturally takes the complex behavior of propagating waves into account and can be used to make accurate estimates of formation elastic parameters.The method was applied to field data from the Daqing oilfield in eastern China.The verification drilling confirmed that the distribution of remaining oils can be predicted effectively on condition that the full waveform elastic inversion of multi-component seismic data is integrated with the fluid shear modulus when distinguishing crude oils from formation water.
引文
[1]伍大庆.大庆长垣各类油层动用状况及挖潜方式探讨[J].大庆石油地质与开发,2010,29(4):70-73.Wu Daqing.Discussion on producing status and potentialitiestapping in various oil layers in Daqing placanticling[J].Petrole-um Geology and Oilfield Development in Daqing,2010,29(4):70-73.
    [2]刘文岭.高含水油田油藏地球物理技术:中国石油物探的新领域[J].石油学报,2010,31(6):959-965.Liu Wenling.Reservoir geophysics techniques in development ofmature oilfields with high water cut:a new research area of geo-physical prospecting for petroleum in China[J].Acta PetroleiSinica,2010,31(6):959-965.
    [3]石玉梅,姚逢昌,刘雯林.陆相碎屑岩油藏长期水驱时移地震监测的可行性[J].石油地球物理勘探,2005,40(3):328-333.Shi Yumei,Yao Fengchang,Liu Wenlin.Feasibility of time-lapse seis-mic monitoring in long-period water-drive continental facies clas-tic rock reservoir[J].Oil Geophysical Prospecting,2005,40(3):328-333.
    [4]赵邦六,石玉梅.利用多分量地震数据预测油气藏分布[J].石油学报,2008,29(5):676-679.Zhao Bangliu,Shi Yumei.Prediction of hydrocarbon distributionusing multi-component seismic data[J].Acta Petrolei Sinica,2008,29(5):676-679.
    [5]赵邦六.多分量地震勘探在岩性气藏勘探开发中的应用[J].石油勘探与开发,2008,35(4):397-423.Zhao Bangliu.Application of multi-component seismic exploration第2期赵邦六等:多分量地震全波形弹性反演预测砂岩油藏剩余油分布in the exploration and production of lithologic gas reservoirs[J].Petroleum Exploration and Development,2008,35(4):397-423.
    [6]孙歧峰,杜启振.多分量地震数据处理技术研究现状[J].石油勘探与开发,2011,38(1):67-73.Sun Qifeng,Du Qizhen.A review of the multi-component seismicdata processing[J].Petroleum Exploration and Development,2011,38(1):67-73.
    [7]蔡希源,唐建明,陈本池.三维多分量地震技术在川西新场地区深层致密砂岩裂缝检测中的应用[J].石油学报,2010,31(5):737-743.Cai Xiyuan,Tang Jianming,Chen Benchi.A 3D multi-componentseismic exploration technique applied to the detection of deep-seat-ed tight sandstone fractures in the Xinchang area of the western Si-chuan Basin[J].Acta Petrolei Sinica,2010,31(5):737-743.
    [8]石玉梅,谢桂生.多分量数据静校正对叠前振幅分析的影响[J].石油地球物理勘探,2006,41(6):635-639.Shi Yumei,Xie Guisheng.Influence of multi-component datastatic corrections on prestack amplitude analysis[J].Oil Geo-physical Prospecting,2006,41(6):635-639.
    [9]Tarantola A.Inversion of reflection data in the acoustic approxi-mation[J].Geophysics,1984,49(8):1259-1266.
    [10]Zhou C,Schuste G T,Hassanzadeh S,et al.Elastic wave equationtraveltime and waveform inversion of crosswell data[J].Geo-physics,1997,62(3):853-868.
    [11]Shi Yumei,Zhao Wenzhi,Cao Hong.Nonlinear process control ofwave-equation inversion and its application in the detection of gas[J].Geophysics,2007,72(1):9-18.
    [12]Berryman J G.Origin of Gassmann’s equations[J].Geophysics,1999,64(5):1627-1629.
    [13]Russell B H,Hedlinz K,Hilterman F J,et al.Fluid-property dis-crimination with AVO:a Biot-Gassmann perspective[J].Geo-physics,2003,68(1):29-39.
    [14]Best A I,McCann C.Seismic attenuation and pore-fluid viscosityin clay-rich reservoir sandstones[J].Geophysics,1995,60(5):1386-1397.
    [15]Makarynska D,Gurevich B,Behura J,et al.Fluid substitutionin rocks saturated with viscoelastic fluids[J].Geophysics,2010,75(2):115-122.
    [16]Krief M,Garat J,Stellingwerff J,et al.A petrophysical interpre-tation using the velocities of P and S waves(full-waveform son-ic)[J].The Log Analyst,1990,31:355-369.
    [17]Ciz R,Shapiro S A.Generalization of Gassmann equations for porousmedia saturated with a solid material[J].Geophysics,2007,72(6):75-79.
    [18]石玉梅,姚逢昌,孙虎生,等.地震密度反演及地层孔隙度估计[J].地球物理学报,2010,53(1):197-200.Shi Yumei,Yao Fengchang,Sun Husheng,et al.Density inver-sion and porosity estimation using seismic data[J].Chinese Jour-nal of Geophysics,2010,53(1):197-200.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心