一种深埋隧道地震响应计算方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文通过考虑松动圈围岩强度降低、松动破裂形成的垫层效应以及地震波的绕流效应,提出使用松动圈折减系数R来计算隧道的地震响应。在衬砌结构随地层运动内力理论解基础上,以S波为例,推导了考虑松动圈减震作用的计算方法。运用有限差分软件FLAC3D中的动力模块对隧道松动圈减震问题进行了数值模拟,并与衬砌结构随地层运动内力理论解及建议的松动圈折减系数法进行对比。结果表明,在充分考虑松动圈存在的情况下,使用松动圈折减系数法计算出来的结果与数值模拟结果较为吻合(最大弯矩误差值为8.28%,最大剪力误差值为10.68%),较衬砌随地层运动理论解法更为精确(最大弯矩误差值为62.13%,最大剪力误差值为50.49%)。该方法计算思路和概念清晰,计算公式简洁明了,计算量较小,便于实际应用。
The paper presents a calculation method of deep buried tunnel seismic response considering rock loosing zone cushioning effect.The basic train of thought is considering strength decrease of surrounding rock,cushion effect after rock loosing and fracture and wave transmit around the loosing zone.Reduction factor R is used to calculate the seismic response.Theoretical solution of lining structure uniform to surrounding rock movement is given,based on which,a calculation method considering rock loosing zone damping effect is deduced,taking S wave as an example.FLAC3D dynamic module is used to make numerical simulation of loosing zone damping effect.The results are compared with theoretical solution of lining structure uniform to surrounding rock movement and reduction factor method.Conclusions are: When loosing zone is fully taken into account,the result of reduction factor R method is coinciding with numerical simulation result(Maximum error value of bending moment is 8.28%,maximum error value of shear force is 10.68%),more accurate than theoretical solution of lining structure uniform to surrounding rock movement(Maximum error value of bending moment is 62.13%,maximum error value of shear force is 50.49%).The train of thought and concept of this method is clear,with concise formula and less calculation,and easy to practical application.
引文
[1]福季耶娃H H.地震区地下结构物支护的计算[M].徐显毅译.北京:煤炭工业出版社,1986.
    [2]Thomas R K.Earthquake design criteria for subway[J].Journal of the structural Division Proceed-ings of ASCE.1969,6:1 213-1 231.
    [3]高田至郎.地下生命线的耐震设计[J].隧道译从,1991,(7):44-51.
    [4]川岛一彦.地下构筑物耐震设计[M].日本:鹿岛出版社,1994.
    [5]Dasgupta G A.A finite element formulation for unbounded homogeneous continua[J].J of ApplMech ASIA,1982,49:136-140.
    [6]Wolf J P,Song C M.Dynamic-stiffness matrix of unbounded soil by finite element mufti-cell clo-ning[J].Earthquake Eng Struct Dyn,1994,23(3):232-250.
    [7]Song C M,Wolf J P.Dynamic stiffness of unbounded medium based on damping-solvent extraction[J].EESD,1994,23(2):169-181.
    [8]Song C M,Wolf J P.The scaled boundary finite element method-aprimer solution procedures[J].Computers and Structures,2000,78(3):211-225.
    [9]Youssef.Seismic design and analysis of underground structures[J].Tunnelling and UndergroundSpace Technology,2001,16:247-293.
    [10]徐文焕.地下结构抗震分析中若干问题的探讨[J].西南交通大学学报,1993,(3):1-5.
    [11]王明年.高烈度地震区地下结构减震技术原理的研究[D].成都:西南交通大学,1999.
    [12]李育枢.山岭隧道地震动力响应及减震措施研究[D].上海:同济大学,2006.
    [13]高峰,李德武.隧道三维地震反应分析若干问题的研究[J].岩土工程学报,1998,20(4):48-53.
    [14]龙驭球.弹性地基梁的计算[M].北京:人民教育出版社,1981.
    [15]王明年,崔光耀.高烈度地震区隧道减震模型的建立及其减震效果模型试验研究[J].岩土力学,2010,31(6):1 884-1 890.
    [16]潘昌实.隧道及地下结构物抗震问题的研究概况[J].世界隧道,1996,(5):7-16.
    [17]关宝树.免震构造设计指针及解释[D].成都:西南交通大学,1992.
    [18]袁松.地震动力响应下公路隧道合理净距的研究[D].成都:西南交通大学,2008.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心