蛇纹石脱水与大洋俯冲带中源地震(70~300km)的关系
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
蛇纹石脱水致裂作用是诱发大洋俯冲带中源地震(70~300km)的一种重要成因机制,它与中等深度双地震带的形成有很密切的关系。双地震带在冷俯冲带中是一种常见现象,它由上下相距20~40km的两个平行地震层组成。上地震层位于俯冲洋壳中,可能是洋壳蓝片岩脱水形成榴辉岩的系列脱水反应诱发了地震;下地震层位于大洋俯冲地幔中,可能是部分交代的地幔橄榄岩脱水控制着中源地震的分布。蛇纹岩在高温高压条件下的变形实验证实蛇纹石在脱水过程中引起岩石弱化和脆性破裂,这已经得到了对蛇纹石脱水过程中岩石物理性质和变形后样品的显微构造等理论研究上的支持。在蛇纹石脱水过程中,产生的流体与固体残留物分离,形成了大量的I型(张性)微裂隙,最终导致岩石破裂和形成断层。根据叶蛇纹石脱水反应相图,理论上在大洋俯冲带中蛇纹石脱水位置会出现双层结构,但只有平行于俯冲板块顶层等温线的一支才可能脱水诱发地震,并对应于双地震带的下地震层。下地震层所处的位置具有低的vp/vs值,暗示岩石圈大洋地幔顶层发生了部分交代。但它的交代机制尚不清楚,可能是海水通过洋底转换断层和/或沿着在外海沟隆起中形成的断层渗入大洋地幔顶层,并发生了洋壳和大洋地幔交代。双地震带在120~200km深度合一以后,冷俯冲带中所发生的中源地震可能与蛇纹石脱水有关,在热俯冲带中更可能与“湿”榴辉岩脱水有关。
Dehydration embrittlement of serpentine is an important trigger of intermediate-focus earthquakes (70~300 km) in oceanic subduction zones, which is closely related to the formation of a double seismic zone at the depth range of 50~250 km. A double seismic zone in which two parallel seismic planes are usually separated by 20~40 km, is commonly observed in cold subduction zones; whereas the upper seismic plane is located in subducting oceanic crust and the earthquakes result from blueschists dehydration and formation of eclogites; the lower seismic plane is formed in subducting oceanic mantle and the loci of earthquakes are probably controlled by dehydration of locally hydrated uppermost mantle. Deformation experiments of serpentinite at high temperatures and pressures have showed dehydration weakening and embrittlement.Petrophysics theory suggests that water-assisted faulting occurs when the fluid is separated from solid residue during the process of serpentine dehydration and Mode I (tensile) microfractures are generated. The dehydration loci of serpentine should produce a double-layered structure in an oceanic subduction zone according to the phase diagram of antigorite, but only the lower layer which parallels isotherms corresponds to the lower plane of double seismic zones. It is associated with very low v_p/v_s ratios (1.60~1.70) that imply a partially hydrated oceanic uppermost mantle. However, the hydrated mechanisms of the mantle have not been well understood. One suggestion is that seawater can be injected deep into the uppermost oceanic mantle along transform faults and/or major faults in a subducting slab that are ruptured by outer trench rise events. When the two planes of a double seismic zone merge into one below depths of 120~200 km in a cold subduction zone, the initiating mechanism of earthquakes should still be the dehydration embrittlement of serpentine.Alternatively, it might be related to “wet” eclogite dehydration, especially in hot subduction zones with only one seismic plane if the earthquakes occur in the appropriate depth range for such dehydration.
引文
[1]FROHLICH C.The nature of deep-focus earthquakes[J].Ann Rev Earth Planet Sci,1989,17:227-254.
    [2]OMORI S,KAMIYAS,MARUYAMAS,et al.Morpholo-gy of the intraslab seismic zone and devolatilization phase equilibria of the subducting slab peridotite[J].Bull Earth Res Inst Univ Tokyo,2002,76:455-478.
    [3]TAO WC,O'CONNEL RJ.Deformation of a weak subduc-ted slab and variation of seismicity with depth[J].Nature,1993,361:626-628.
    [4]OMORI S,KOMABAYASHI T,MARUYAMA S.Dehy-dration and earthquake in the subducting slab:empirical link inintermediate and deep seismic zones[J].Phys Earth Planet Inter,2004,146:297-311.
    [5]CHARLES H E.Seismic constraints on mechanisms of deep earthquake rupture[J].J Geophys Res,2004,109,B02306,doi:10.1029/2003JB002449.
    [6]PEACOCK S M,WANG K.Seismic consequences of warmversus cool subduction metamorphism:examples fromsouth-west and northeast Japan[J].Science,1999,286:937-939.
    [7]GREEN H WII.Solving the paradox of deep earthquakes[J].Sci Am,1994,271(3):64-71.
    [8]BRIDGEMAN P W.Polymorphic transitions and geological phenomenon[J].AmJ Sci,1945,213A:90-97.
    [9]LI U L.Phase transformations,earthquakes and descending lithosphere[J].Phys Earth Planet Inter,1983,32:226-240.
    [10]GREEN H WII,BURNEY P C.A new self-organizing mechanism for deep focus earthquakes[J].Nature,1989,341:733-737.
    [11]GREEN H WII.Deep earthquakes:Faulting triggered by the olivine-spinel transformation[J].Earth Science Fron-tiers,1995,2(1-2):19-25.
    [12]RALEIGH C B,PATERSON MS.Experi mental deforma-tion of serpentinite and its tectonic i mplications[J].J Geo-phys Res,1965,70:3965-3985.
    [13]DOBSON D P,MEREDITHP G,BOONS A.Si mulation of subduction zone seismicity by dehydration of serpentine[J].Science,2002,298:1407-1410.
    [14]JUNG H,GREEN H WII,DOBRZHI NETSKAYA L F.Intermediate-depth earthquake faulting by dehydration em-brittlement with negative volume change[J].Nature,2004,428:545-549.
    [15]MEADE C,JEANLOZ R.Acoustic emissions and shear in-stabilities during phase transformations in Si and Ge at ultra-high pressures[J].Nature,1989,339:616-618.
    [16]MEADE C,JEANLOZ R.Deep-focus earthquakes and recy-cling of water into the earth's mantle[J].Science,1991,252:68-72.
    [17]CONNOLLYJ A D,KERRICK D M.Metamorphic controls on seismic velocity of subducted oceanic crust at100~250kmdepth[J].Earth Planet Sci Lett,2002,204:61-74.
    [18]HACKER R H,PEACOCK S M.ABERS G A,et al.Sub-ducting factory:2.Are intermediate-depth earthquakes in subducting slabslinkedto metamorphic dehydration reactions[J]?J Geophys Res,2003,108,B1,2030doi:10.1029/2001JB001129.
    [19]YAMASAKI T,SENO T.Double seismic zone and dehydra-tion embrittlement of the subducting slab[J].J Geophys Res,2003,108(B4),2212,doi:10.1029/2002JB001918.
    [20]POLI S,SCHMIDT M W.The high-pressure stability of hy-drous phases in orogenic belts:an experi mental approach on eclogite-forming process[J].Tectonophysics,1997,273:169-184.
    [21]FORNERIS J F,HOLLOWAYJ R.Phase equilibria in sub-ducting basaltic crust:i mplications for H2O release fromthe slab[J].Earth Planet Sci Lett,2003,214:187-201.
    [22]ZHANG Junfeng,GREEN H WII,BOZHILOV K,et al.Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust[J].Nature,2004,428:633-636.
    [23]JI N Zhenmin.Dynamics of phase transformation in upper mantle[M]//XI AO Qinghui,SONG Lisheng,LI Xiaobo.Frontiers of geological sciences in1990s:research priorities for China.Wuhan:China University of Geosciences Press,1993:121-130(in Chinese).
    [24]ZHOU Yi.Anew mechanismof deep-focus earthquakes:an-ticrack faulting[J].Geological Science and Technology Infor-mation,1994,13(4):5-12(in Chinese).
    [25]PEACOCK S M.Are the lower planes of double seismic zones caused by serpentine dehydrationin subducting oceanic mantle[J]?Geology,2001,29(4):299-302.
    [26]ABERS G A.Plate structure and origin of double seismic zones[M]//BEBOUT G E,SCHOLL D W,KIRBY S H,et al.Subduction:top to bottom.Washington DC:AGU,1996,Monograph96:223-228.
    [27]ENGDAHL E R,SCHOLZ C H.A double Benioff zone be-neath the central Aleutians:an unbending of the lithosphere[J].Geophys Res Lett,1977,4:473-476.
    [28]COMTE D,DORBATHL,PARDO M,et al.Adouble-lay-ered seismic zone in Arica,northern Chile[J].Geophys Res Lett,1999,26:1965-1968.
    [29]HASEGAWA A,UMI NO N,TAKAGI A.Seismic struc-ture of the northeastern Japan convergent plate margin:a syntheses[J].J Geophys Res,1994,99:22295-22311.
    [30]GORBATOV A,SUEREZ G,KOSTOGLODOV V,et al.A double-planed seismic zonein Kamchatka fromlocal and teleseis-mic data[J].Geophys Res Lett,1994,21:1675-1678.
    [31]KAO H,LI U L G.A hypothesis for the seismogenesis of a double seismic zone[J].Geophys J Int,1995,123:71-84.
    [32]MCGUIRE J J,WIENS D A.Adouble seismic zone in New Britain and the morphology of the Solomon plate at interme-diate depth[J].Geophys Res Lett,1995,22:1965-1968.
    [33]KAWAKATSU H.Downdip tensional earthquakes beneath the Tonga arc:a double seismic zone[J]?J Geophys Res,1986,91:6432-6440.
    [34]KAWAKATSU H,SENO T.Triple seismic zone andthe re-gional variation of seismic alongthe northern Honshu arc[J].J Geophys Res,1983,88:4215-4230.
    [35]MATSUZAWA T,UMI NO N,HASEGAWA A,et al.Normal fault type events in the upper plane of the double-planed deep seismic zone beneath the northeastern Japan arc[J].J Phys Earth,1986,34:85-94.
    [36]OZEL N,MORIYA T.Focal mechanisms of intermediate-depth earthquakes beneath southeastern Hokkaido,Japan:i mplications of the double seismic zone[J].Pure App Geo-phys,2003,160:2279-2299.
    [37]TIBI R,BOCK G,ESTABROOK C H.Seismic body wave constraint on mechanisms of intermediate-depth earthquakes[J].J Geophys Res,2002,107(B3),2047,10.1029/2001JB000361.
    [38]CHRISTOVA C,SCHOLZ C H.Stresses in the Vanuatu subducting slab:a test of two hypotheses[J].Geophys Res Lett,2003,30(15):1790-1793
    [39]KAWAKATSU H.Double seismic zone:kinematics[J].J Geophys Res,1986,91:4811-4825.
    [40]YOSHII T.Adetailed cross-section of the deep seismic zone beneath northeastern Honshu,Japan[J].Tectonophysics,1979,55:349-360.
    [41]VEITH K F.The nature of the dual zone of seismicityin the Kuriles arc[J].EOS Trans AGU,1977,58:1232.
    [42]YANG M,TOKSOZ M N,SMITH A T.Thermoelastic a-nalysis of the stresses in a subduction region[J].EOS Trans AGU,1977,58:1233.
    [43]HAMAGUCHI H,GOTO K,SUZUKI Z.Double-planed structure of intermediate-depth seismic zone and thermal stress in the descending plate[J].J Phys Earth,1983,31:329-347.
    [44]GOTO K,HAMAGUCHI H,SUZUKI Z.Earthquake gen-erating stress in a descending slab[J].Tectonophysics,1985,112:111-128.
    [45]BOSE K,NAVROTSKY A.Thermochemistry and phase equilibria of hydrous phases in the system MgO-Si O2-H2O:i mplications for volatile transport to the mantle[J].J Geo-phys Res,1998,103:9713-9719.
    [46]WUNDER B,SCHREYER W.Antigorite:high-pressure sta-bility in the system MgO-Si O2-H2O(MSH)[J].Lithos,1997,41:213-227.
    [47]KOMABAYASHI T,OMORI S,MARUYAMAS.Petroge-netic gridin the system MgO-Si O2-H2Oupto30GPa,1600℃:applications to hydrous peridotite subducting into Earth's deepinterior[J].J Geophys Res,2004,109,B03206,doi:1001029/2003JB002651.
    [48]BERMAN R G,ENGI M,GREENWOOD HJ,et al.Deri-vation of internally consistent thermodynamic data by the technique of mathematical programming:a review with appli-cation to the system MgO-Si O2-H2O[J].J Petrol,1986,27:1331-1364.
    [49]HYNDMAN R D,PEACOCK S M.Serpentinization of the fore arc mantle[J].Earth Planet Sci Lett,2003,212:417-432.
    [50]ULMER P,TROMMSDORFF V.Serpentine stability to mantle depths and subduction-related magmatism[J].Sci-ence,1995,268:858-861.
    [51]O HANLEY DS,CHERNOSKYJ V,WICKS FJ.The sta-bility of lizardite and chrysotile[J].Can Mineralogy,1989,27:483-493.
    [52]STALDER R,ULMER P.Phase relations of a serpentine composition between5and14GPa:significance of clinohu-mite and phase E as water carriers into the transition zone[J].Contrib Mineral Petrol,2001,140,754doi:10.1007/s004100100246.
    [53]PAWLEY A R.The reaction talc+forsterite=enstatite+H2O:new experi mental results and petrological i mplications[J].Am Mineral,1998,83:51-57.
    [54]HACKER B R,ABER G A,PEACOCK S M.Subduction factory:1.Theoretical mineralogy,densities,seismic wave speeds,and H2O contents[J].J Geophys Res,2003,108,B1,2029doi:10.1029/2001JB001127.
    [55]RUPKE L H,MORGANJ P,HORT M,et al.Serpentine and the subduction zone water cycle[J].Earth Planet Sci Lett,2004,223:17-34.
    [56]OHTANI E,LITASOV K,HOSOYA T,et al.Watertransport into the deep mantle and formation of a hydrous transition zone[J].Phys Earth Planet Int,2004,143-144:255-269.
    [57]SEIPOLD U,SCHILLI NG F R.Heat transport in serpen-tinites[J].Tectonophysics,2003,370:147-162.
    [58]O HANLEY D S.Serpentinites:records of tectonic and pet-rological history[M].New York-Oxford:Oxford University Press,1996:172-177.
    [59]ZHANG Haijiang,THURBER C H,SHELLY D,et al.High-resolution subducting-slab structure beneath northern Honshu,Japan,revealed by double-difference tomography[J].Geology,2004,32(4):361-364.
    [60]CHRISTENSEN NI.Poisson's ratio and crustal seismology[J].J Geophys Res,1996,101:3139-3156.
    [61]CHRISTENSEN N I.Elasticity of ultrabasic rocks[J].J Geophys Res,1966,71:921-5931.
    [62]XIE Hongsen,ZHOU Wenge,LI Yuwen,et al.The elastic characteristics of serpentinite dehydration at high tempera-ture high pressure andits significance[J].Chinese Journal of Geophysics,2000,43(6):811-816(in Chinese).
    [63]LAI Hongzhou,WANG Shiqi,YU Ning.Mineralogical characteristics of the thermal treat ment products of antigorite from Xiuyan,Liaoning[J].Acta Mineralogical Sinica,2003,23(2):124-128(in Chinese).
    [64]SONG Maoshuang,XIE Hongsen,ZHANG Haifei.Dehy-dration temperature of serpentine at elevatedtemperature and pressures by electrical conductivity method and its i mplica-tions[J].Acta Mineralogical Sinica,1996,16(2):178-183(in Chinese).
    [65]ERIC T,STEPHEN F C.Reaction-enhanced permeability during serpentinite dehydration[J].Geology,2003,31(10):921-924.
    [66]JULIETTE F F,JOHN R H.Phase equilibria in subducting basaltic crust:i mplications for H2Orelease fromthe slab[J].Earth Planet Sci Lett,2003,214:187-201.
    [67]CARLSON R L,MILLER DJ.Mantle wedge water contents esti mate fromseismic velocitiesin partially serpentinized per-idotites[J].Geophys Res Lett,2003,30,1250,doi:10.1029/2002GL016600.
    [68]SATO H,ITO K.Olivine-pyroxene-H2Osystemas a practi-cal analogue for esti mating the elastic properties and temper-atures[J].Geophys Res Lett,2002,29,1325,doi:10.1029/201GL014212.
    [69]TAKEI Y.Effect of pore geometry onvp/vs:fromequilibri-umgeometry to crack[J].J Geophys Res,2002,107,B2,2043,doi:10.1029/2001LB000522.
    [70]MEVEL C.Serpentinization of abyssal peridotites at mid-o-cean ridges[J].C R Geoscience,2003,335:825-852.
    [71]SENO T,YAMANAKA Y.Double seismic zones,compres-sional deep trench-outer rise events,and superplumes[M]//BEBOUT G E,SCHOLL D W,KIRBY S H,et al.Subduc-tion:top to bottom.Washington DC:AGU,1996,Mono-graph96:347-355.
    [72]WESSEL P.Sizes and ages of seamounts using remote sens-ing:i mplications for intraplate volcanism[J].Science,1997,277:802-805.
    [73]FRANCIS TJ G.Serpentinization faults and their role in the tectonics of slowspreading ridges[J].J Geophys Res,1981,86:11616-11622.
    [74]RANERO C R,PHIPPS MJ,MCI NTOSH K,et al.Ben-ding-related faulting and mantle serpentinization at the Mid-dle America trench[J].Nature,2003,425:367-373.
    [75]THOMAS M B,TOM P,ANNE M T,et al.Seismic evi-dence for widespread serpentinizedforearc upper mantle along the Cascadia margin[J].Geology,2003,313(3):267-270.
    [76]STEFANO P,MAX WS.Petrology of subducted slabs[J].Annu Rev Earth Planet Sci,2002,30:207-235.
    [77]van KEKEN P E.The structure and dynamics of the mantle wedge[J].Earth Planet Sci Lett,2003,215:323-338.
    [78]van KEKEN P E,KEIFER B,PEACOCK S M.High-reso-lution models of subduction zones:i mplications for mineral dehydration reactions andthe transport of waterintothe deep mantle[J].Geochem Geophy Geosys,2002,3(10),1056doi:10.1029/2001GC000256.
    [79]PEACOCK S M.Thermal and petrological structure of sub-duction zones[M]//BEBOUT G E,SCHOLL D W,KIRBYS H,et al.Subduction:topto bottom.Washington DC:AGU,1996,Monograph96:119-133.
    [80]I WAMORI H.Transportation of H2O and melting in sub-duction zones[J].Earth Planet Sci Lett,1998,27:819-822.
    [81]RALEIGH C B.Tectonic i mplications of serpentinite weak-enning[J].Geophys J R Astro Soc,1966,70(NS32):1-6.
    [82]HUBBERT M K,RUBEY W W.Role of fluid pressure in mechanics of overthrust faulting I.Mechanics of fluid-filled porous solids and its application to overthrust faulting[J].Bull Geol Soc Am,1959,70:115-166.
    [83]RUBEY W W,HUBBERT M K.Role of fluid pressure in mechanics of overthrust faulting II.Overthrust belt in Geo-synclinal area of western Wyoming in light of fluid-pressure hypothesis[J].Bull Geol Soc Am,1959,70:115-166.
    [84]MURRELL S AF,ISMAILI A H.The effect of decomposi-tion of hydrous minerals on the mechanical properties of rocks at high pressures and temperatures[J].Tectonophys-ics,1976,31:207-258.
    [85]RUTTER E H,BRODIC K H.Experi mental"syntectonic"dehydration of serpentinite under conditions of controlled pore water pressure[J].J Geophys Res,1988,93:4907-4932.
    [86]KO S C,OLGAARD D L,WONG T F.Generation and ma-intenance of pore pressure excess in a dehydrating system1.Experi mental and microstructural observations[J].J Geo-phys Res,1997,102(B1):825-839.
    [87]WONG T F,KO S C,OLGAARD D L.Generation and ma-intenance of pore pressure excess in a dehydrating system2.Theoretical analysis[J].J Geophys Res,1997,102(B1):841-852.
    [88]DAVIES J H.The role of hydraulic fractures and intermedi-ate-depth earthquakes in generating subduction-zone mag-matism[J].Nature,1999,398:142-145.
    [89]ETHERIDGE M A,WALL VJ,COX S F.Highfluid pres-sures during regional metamorphism and deformation:i mpli-cations for mass transport and deformation mechanisms[J].J Geophys Res,1984,89(B6):4344-4358.
    [90]HORIT H,NEMAT-NASSER S.Compression-induced mi-crocrack growthin brittle solids:axial splitting and shear fail-ure[J].J Geophys Res,1985,90(B4):3105-3125.
    [91]JI N Zhenmin,ZHANGJunfeng,GREEN H WII,et al.Ec-logite rheology:i mplications for subducted lithosphere[J].Geology,2001,29:667-670.
    [92]JI N Zhenmin,ZHANG Junfeng,GREEN H WII,et al.Rheology of deep oceanic subduction zone and its i mplication for earth dynamics:resulting from mantle rocks high temper-ature high pressure experi ments[J].Science in China:Series D,2001,31(12):969-976(in Chinese).
    [93]HERMANNJ,MUNTENER O,SCAMBELLURI M.The i mportance of serpentinite mylonites for subduction and ex-humation of oceanic crust[J].Tectonophysics,2000,327:225-238.
    [94]SCHWARTZ S,ALLEMAND P,GUILLOT S.Numerical model of the effect of serpentinites on exhumation of eclogitic rocks:insights fromthe Monviso ophiolitic massif(Western Alps)[J].Tectonophysics,2001,342:193-206.
    [95]GUILLOT S,HATTORI K,SIGOYER J.Mantle wedge serpentinization and exhumation of eclogites:insights from eastern Ladakh,northwest Hi malaya[J].Geology,2000,28(3):199-202.
    [96]GUILLOT S,HATTORI K,SIGOYERJ,et al.Evidence of hydration of the mantle wedge andits role in the exhumation of eclogites[J].Earth Planet Sci Lett,2001,193:115-127.
    [23]金振民.上地幔相变动力学[M]//肖庆辉,宋力生,李晓波.当代地质科学前沿———我国今后值得重视的前沿研究领域[C].武汉:中国地质大学出版社,1993:121-130.
    [24]周翊.深源地震机理的新认识———反向裂隙断层作用[J].地质科技情报,1994,13(4):5-12.
    [62]谢鸿森,周文戈,李玉文,等.高温高压下蛇纹岩脱水的弹性特征及其意义[J].地球物理学报,2000,43(6):811-816.
    [63]来红州,王时麒,俞宁.辽宁岫岩叶蛇纹石热处理产物的矿物学特征[J].矿物学报,2003,23(2):124-128.
    [64]宋茂双,谢鸿森,郑海飞,等.高温高压下电导-温度曲线方法进行蛇纹石的脱水温度测量及其意义[J].矿物学报,1996,16(2):178-183.
    [92]金振民,章军锋,GREEN H WII,等.大洋深俯冲带流变性质及其地球动力学意义———来自高温高压实验的启示[J].中国科学,D:2001,31(12):969-976.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心