海洋平台确定多维地震动最不利输入方向的一种有效方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
提出一种快捷、高效且可靠的方法来确定海洋平台结构多维地震反应分析中地震动的最不利输入方向。该方法利用MATLAB中的小波分析工具箱可以方便且形象地显示地震动的局部时频特性,并根据平台结构的模态信息提取所关心响应的重要小波系数曲线从而获得地震动的有效输入能量时间过程,并判别地震动的最不利输入方向。以某一实际海洋平台为例,采用所提出的方法对四类场地的十组实际地震动不同角度输入情况进行了计算,同时利用ANSYS软件对平台的各种工况进行了时程反应分析以校核该方法的有效性;同时采用相同的方案对一组单自由度系统在某一地震动作用下进行了计算与校核。计算结果均表明:当结构对地震动方向较敏感时,在地震动以不同角度输入情况下,地震动有效输入能量最大的方向正是结构响应最大的方向,小波变换系数法在多维地震反应分析中具有很好的应用前景。
An efficient, convenient and reliable method is presented to search the critical angle of seismic wave in multi-components seismic response of offshore platform. Wavelet analysis toolbox in MATLAB is used to reveal the time-frequency information of the earthquake wave visually. Based on both the mode information of the platform and the time-frequency characteristics of the earthquake, the key wavelet coefficient curve can be drawn to obtain the effective energy time-history curve, through which the critical angle of seismic wave can be determined. As an example, the critical angle of seismic wave is determined towards an actual platform under ten groups of seismic loads, which represent loads on four types of grounds with a group of single degree of freedom systems. Different cases are verified through time-history analysis with ANSYS program. The results show that when the structure is sensitive to the input direction of earthquake, the effective energy and the structure's response reach their peak value at the same input angle of seismic wave, and this angle is just the critical angle of seismic wave.
引文
[1]李宏男,孙鸿敏.小波分析在土木工程领域中的应用[J].世界地震工程,2003,19(2):16—22.
    [2]曹晖,赖明,白绍良.小波理论在结构抗震研究中的应用探讨[J].世界地震工程,2001,17(3):70—74.
    [3]程军圣,于德介,邓乾旺,杨宇,张邦基.时间-小波能量谱在滚动轴承故障诊断中的应用[J].振动与冲击,2004,23(2):34—36.
    [4]伊廷华,李宏男,李兵,孙丽.地震动信号小波谱分析与结构损伤评估[J].振动与冲击,2006,25(5):32—36.
    [5]凌同华,李夕兵,陈文胜.基于小波分析的爆破地震效应评估[J].振动与冲击,2007,26(2):124—127.
    [6]朱东生,虞庐松,刘世忠.不规则桥梁地震动输入主方向的研究[J].兰州铁道学院学报(自然科学版),2000,19(6):37—40.
    [7]范立础,聂利英,李建中.复杂结构地震波输入最不利方向标准问题[J].同济大学学报,2003,31(6):631—636.
    [8]Li Hongnan,Sun Li,Song Gangbing.Modal combination method for earthquake-resistant design of tall structures to multidimensional excitations[J].The Structural Design of Tall and Special Buildings,2004,13(4):245—263.
    [9]赵灿晖,周志祥.多维非平稳随机地震响应分析的快速算法[J].振动与冲击,2006,25(5):62—73.
    [10]Wilson E L,et al.Three-dimension Dynamic Analysis for Multi-component[J].Earthquake Spectra,EESD,1982,10:471—476.
    [11]Smeby W,Kiureghian A D.Modal combinations rules for multicomponent earthquake excitation[J].Earthquake Engi-neering and Structure Dynamic,1985,13:1—12.
    [12]Lopez O A.The critical angle of seismic incidence and the maximum structural response[J].Earthquake Engineering and Structure Dynamic,1997,26:881—894.
    [13]Menun C,Kiureghian AD.Areplacement for the30%,40%and SRSS rules for multicomponent seismic analysis[J].Earthquake Spectra,1998,14:153—163.
    [14]冯云田,李明瑞,林春哲.复杂结构的弹性地震反应分析[J].地震工程与工程振动,1991,11(4):77—86.
    [15]杨建国.小波分析及其工程应用[M].北京:机械工业出版社,2005:17—22.
    [16]Albert Boggess,Francis J.Narcowich著.芮国胜,康健等译.小波与傅里叶分析基础[M].北京:电子工业出版社,2004.
    [17]张保军,于春洁.春晓气田群井口平台结构形式研究[J].中国海上油气,2003,15(1):29—31.
    [18]谢礼立,翟长海.最不利设计地震动研究[J].地震学报,2003,25(3):250—261.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心