位移谐波激励下拱顶锚固储罐的动力屈曲研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地震下储罐罐壁发生屈曲是其主要的震害形式,研究储罐的动力屈曲特性尤为重要。以位移简谐波为水平激励,运用ADINA有限元软件对高径比分别为0.82、1.24和1.85的3种拱顶锚固储罐进行动力屈曲分析。根据Budiansky-Roth动力屈曲准则,通过谐波位移幅值对应的加速度峰值PGA和储罐位移响应,绘制特征节点的"伪平衡路径"轨迹,以确定临界加速度峰值,判断储罐动力屈曲。3种储罐模型在位移谐波激励下均为弹性屈曲。通过动力屈曲分析得出结论:储罐屈服的位置随高径比的不同有所不同,屈服多发生在径向变形最大处,罐壁内外面的塑性总应变值和屈服应力值大小不同等。最后以储罐模型B为例,将以"伪平衡路径"轨迹确定的临界应力与规范公式的计算结果进行了比较。
Seismic disasters are indicated that buckling of tank shells is the main earthquake damage,so it is particularly important for studying the dynamic buckling characterization of the tank.The dynamic buckling of vault-anchored tanks subjected to the harmonic excitation of horizontal displacement is investigated.Finite elements models of three cone roof tanks with height to diameter ratios(H/D) of 0.82,1.24 and 1.85 are applied to the study.According to Budiansky-Roth dynamic buckling criteria,the characteristics of the node′s pseudo-balanced path trajectory are mapped with acceleration PGA of hormoric waves and displacement response of tanks for determining critical acceleration peak and tank dynamic buckling.The buckling modes of the three tank are all elastic buckling.The dynamic buckling analyses show that the locations of plastic yielding of the tank are connected with H/D of the tank.The plastic yielding of the tank mostly occurs in the locations of its radial deformation peak.The total plastic strains of inside and outside are different.Finally,for getting the critical stress peak of the vault-anchored tank subjected to horizontal excitation,the calculation results by pseudo-balanced path method and Specification correlative method are compared.
引文
[1]American Lifelines Alliance.Seismic fragility formulation for water systems[C]//ASCE 2001,Part1-Guideline,Part-2 Appendices.
    [2]Niwa A,Clough R W.Buckling of cylindrical liquid-storage tanks under earthquake loading[J].Earthquake Engineering and Structural Dynam-ics,1982,10(1):107-122.
    [3]Rammerstorfer FG,Scharf K,Fisher FD.Storage tanks under earthquake loading[J].ASME Applied Mechanics Review,1990,43(11):261-82.
    [4]Haroun MA,Bhatia H.Analysis of tank damage during the 1994 Northridge Earthquake[C]//Proceedings of the 4thUS Conference on LifelineEarthquake Engineering,ASCE,New York,1995:763-70.
    [5]Teng J G,Rotter J M.Buckling of Thin Metal Shells[M].London:Spon Press,Taylor and Francis,2004.
    [6]Liu W K,Lam D.Nonlinear analysis of liquid filled tank[J].ASCE Journal of Engineering Mechanics,1983,109(6):1344-1357.
    [7]Natsiavas S,Babcock C D.Buckling at the top of a fluid-filled tank during base excitation[J].ASME Journal of Pressure Vessel Technology1987,109(4):374-380.
    [8]Nagashima H,Kokubo K,Takayanagi M,Saitoh K,Imaoka T.Experimental study on the dynamic buckling of cylindrical tanks Comparison be-tween static buckling and dynamic buckling[J].JSME International Journal,1987,30(263):737-46.
    [9]Morita H,Ito T,Hamada K,Sugiyama A,Kawamoto Y,Ogo Hetal.Investigation on buckling behavior of liquid storage tanks under seismic exci-tation:2nd report-Investigation on the nonlinear ovaling vibration at the upper wall[C]//Proceedings of the ASME Pressure Vessels and PipingConference,vol.466,2003:227-234.
    [10]吴志平.拱顶锚固储罐谐波动力响应及动力屈曲分析[D].大庆:大庆石油学院,2009.Wu Zhiping.Analysis of harmonic dynamic response and dynamic buckling of vault-anchored tank[D].Daqing:Daqing Petroleum Institute,2009.
    [11]Malhotra P K.Practical nonlinear seismic analysis of tanks[J].Earthquake Spectra,2000;16(2):473-92.
    [12]帅健,于桂杰.管道及储罐强度设计[M].北京:石油工业出版社,2006.Shuai Jian,Yu Guijie.Strength Design of Pipelines and Storage Tanks[M].Beijing:Petroleum Industry Press,2006.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心