改进的子波反褶积在天然气水合物地震资料处理中的应用
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
天然气水合物地震勘探的实际工作,需要在三维空间对天然气水合物矿体进行精细刻画,为此必须获得高分辨率的地震资料,而反褶积处理是提高地震资料分辨率的主要手段之一。本研究设计的改进子波反褶积算法,对地震记录的对数功率谱进行滤波,不但可有效识别BSR,同时可克服反射系数非白噪声的影响;采用谱间的互相关平均代替算术平均,可有效提高地震资料的分辨率;在提取子波的过程中,采用希尔伯特变换算法,提取子波简单、方便。通过对南海北部海域HS621测线的地震数据进行处理,证明该算法不但能稳定、清晰地追踪BSR,并且能有效地提高地震数据分辨率,满足天然气水合物地震资料精细处理的要求。
The seismic prospecting of gas hydrate requires fine description to the gas hydrate ore-body in three-dimensional space.The high-resolution seismic data should be obtained,and deconvolution of seismic data processing is the primary means to improve resolution.On the basis of traditional wavelet deconvolution algorithm,we designed an improved wavelet deconvolution algorithm.By filtering of logarithmic power spectrum of seismic records,this algorithm could not only recognize BSR(Bottom Simulating Reflector) effectively,but also overcome the influence of non-white noise.The spectral cross-correlation average instead of arithmetic mean,can effectively improve the seismic data resolution.It is simple and convenient to extract wavelet by Hilbert transform algorithm.Seismic data of northern South China Sea line HS621 processing with improved wavelet deconvolution algorithm shows that the algorithm can not only track BSR stably and clearly,but also can effectively improve the seismic data resolution to meet the natural gas hydrate seismic data fine processing.
引文
[1]黄绪德.反褶积与地震道反演[M].北京:石油工业出版社,1992:6-10.
    [2]吴能友,梁金强,王宏斌,等.海洋天然气水合物成藏系统研究进展[J].现代地质,2008,22(3):356-362.
    [3]Huang N E,Zheng S,Long S R,et al.The empirical mode de-composition and the Hilbert spectrum for nonlinear and nonsta-tionary time series analysis[J].Proceedings of the Royal Societyof London(Series A),1998,454:903-995.
    [4]Sloan E D.Clathrate Hydrates of Natural Gases[M].NewYork:Marcel Decker Inc,1998:169-172.
    [5]Kvenvolden K A.Gas Hydrates:Relevance to World Margin Sta-bility and Climate Change[M].London:The Geological SocietyPublishing House,1998:9-30.
    [6]Koh C A,Westacott R E,Zhang W,el a1.Mechanisms of gashydrate formation and inhibition[J].Fluid Phase Equilibria,2002,194:143-151.
    [7]Grevemeyer I,Villinger H.Gas hydrate stability and the assess-ment of heat flow through continental margins[J].GeophysicalJournal International,2001,145(3):647-660.
    [8]Dvorkin J G,Mavko G,Nur A.The effect of cementation on theelastic properties of a granular material[J].Mechanics of Mate-rials,1991,12:207-217.
    [9]宋海斌,吴时国,江为为.南海东北部973剖面BSR及其热流特征[J].地球物理学报,2007,50(5):1508-1517.
    [10]Holbrook W S,Hoskins H,Wood W T,et al.Methane hydrateand free gas on the Blake Ridge from vertical seismic profiling[J].Science,1996,273:1840-1843.
    [11]栾锡武,鲁银涛,赵克斌,等.东海陆坡及邻近槽底天然气水合物成藏条件分析及前景[J].现代地质,2008,22(3):342-355.
    [12]Dillon W P,Grow J A,Paull C K.Unconventional gas hydrateseals may trap gas off southeast U.S.[J].Oil and Gas Journal,1980,78(1):124-130.
    [13]孙春岩,章明昱,牛滨华,等.天然气水合物地震似海底反射现象AVO正演模型研究[J].现代地质,2003,17(3):337-344.
    [14]张明,伍忠良.天然气水合物BSR的识别与地震勘探频率[J].海洋学报,2004,26(4):80-88.
    [15]苏贵士,周兴元.改进的统计子波反褶积[J].石油地球物理勘探,1997,32(3):399-403.
    [16]张光学,黄永样,陈邦彦,等.海域天然气水合物地震学[M].北京:海洋出版社,2003:1-4.
    [17]Hyndman R D,Spence G D.A seismic study of methane hydratemarine bottom simulating reflectors[J].Journal of GeophysicalResearch,1992,97(B5):6683-6698.
    [18]姜辉,岑芳,于兴河.天然气水合物BSR的影响因素分析[J].天然气工业,2008,28(1):64-66.
    [19]Wood W T.Simultaneous deconvolution and wavelet inversion asa global optimization[J].Geophysics,1999,64(4):1108-1115.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心