钢管混凝土拱桥拱肋抗震能力评估方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
钢管混凝土(CFST)拱桥的抗震能力取决于拱肋抗震能力,为了准确地评估CFST拱桥拱肋的抗震能力,提出基于CFST截面屈服状态的评估方法,把拱肋截面屈服状态分为5个阶段,并结合N-M曲线得出抗震能力评估区域。采用地震反应时程分析方法计算地震效应,对CFST拱桥拱肋的抗震能力进行评估,以南宁永和大桥为工程背景进行拱肋的抗震能力评估。得出以下结论:拱顶和拱脚为最危险的截面;7度地震作用下拱肋的大部分仍处于Ⅰ阶段;8度地震作用下拱肋的大部分截面已处于Ⅱ阶段,只有少数截面仍处于Ⅰ阶段;9度地震作用下拱肋的大部分截面已处于Ⅱ阶段,少数截面已处于Ⅲ阶段。基于截面屈服状态的方法是抗震能力评估的一个有效方法。
The seismic capacity of CFST arch bridge depends on the seismic capacity of arch ribs.In order to evaluate accurately the seismic capacity of the arch ribs,evaluation method is presented based on the yield state of the ribs cross-section.In this method,the yield state of the sections is divided into five stages and combines with N-M curves to obtain the districts in which the seismic capacity can be evaluated.The seismic effects is calculated in time-history response analysis.The seismic capacity of the ribs of Nanning Yonghe Bridge is evaluated.It is found:the top and the foot of the arch are dangerous sections,esp.the part of ribs ofⅠ state under 7 degree earthquake.Only a few sections are still inⅠ state,other sections of the arch rib are in Ⅱ yield state under 8 degree earthquake.Most sections of the arch ribs are inⅡ state and some sections are in Ⅲ state under 9 degree earthquake.This method is effective for the evaluation of seismic capacity.
引文
[1]谢开仲,秦荣,韦立林,等.大跨度CFST拱桥行波效应的地震反应分析[J].桂林工学院学报,2005,25(4):455-459.
    [2]Lu Zhihao,Ge Hanbin,Usami Tsutomu.Applicability ofpushover analysis-based seismic performance evaluation proce-dure for steel arch bridges[J].Engineering Structures,2004,26(13):1957-1977.
    [3]Shattarat Nasim K,Symans Michael D,Mc Lean David I,etal.Evaluation of nonlinear static analysis methods and soft-ware tools for seismic analysis of highway bridges[J].Engi-neeringStructures,2008,30(5):1335-1345.
    [4]Kim TH,Lee K M,Chung Y S,et al.Seismic damage as-sessment of reinforced concrete bridge columns[J].Engi-neering Structures,2005,27(4):576-592.
    [5]Fajfar P.Capacity spectrum method based on inelastic designspectrum[C]//Procecdings 12th World Conference onEarthquake Engineering,Auckland,NewZealand,2001.
    [6]Saadeghvaziri M A,Yazdani-Motlagh A R.Seismic behaviorand capacity/demand analyses of three multi-span simply sup-ported bridges[J].EngineeringStructures,2008,30(1):54-66.
    [7]Applied Technology Council.ATC-40 Seismic Evaluationand Retrofit of Concrete Buildings[M].California:SeismicSafety Commission,1996.
    [8]Tjhin Tjen N,Aschheim Mark A,Wallace John W.Yielddisplacement-based seismic design of RC wall buildings[J].Engineering Structures,2007,29(11):2946-2959.
    [9]Padgett Jamie E,DesRoches Reginald.Three-dimensionalnonlinear seismic performance evaluation of retrofit measuresfor typical steel girder bridges[J].Engineering Structures,2008,30(7):1869-1878.
    [10]钟善桐.钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社,1994:1-3.
    [11]翁光远,唐娴,张省侠.钢筋混凝土结构与砌体结构[M].北京:清华大学出版社,2008.
    [12]江见鲸,李杰,金伟良.高等混凝土结构理论[M].北京:中国建筑工业出版社,2007.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心