大跨径钢管混凝土拱桥减震控制装置参数的研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
大跨度桥梁结构的减震控制研究对于桥梁结构的抗震安全具有重要意义。本文以主跨368m的茅草街大桥为研究对象,基于ANSYS建立了该桥的三维有限元模型,并采用子空间迭代法分析了该桥的动力特性。在此基础上进行了大跨度钢管混凝土拱桥的地震响应及减震控制研究,重点进行了弹性连接装置和粘滞阻尼器减震效果的参数敏感性分析,并对比分析了不同位置布设减震装置时的效果。结果表明,纵飘振型对该桥肋纵向相对位移的贡献最大;弹性连接装置和阻尼器均能有效减小地震作用下该桥的肋梁纵向相对位移;综合考虑各关键部位的地震响应时,同时采用两类减震装置并将其分散布置时的减震效果最佳。结论可供大跨度中承式钢管混凝土系杆拱桥的抗震设计参考。
Research on the seismic response control of long-span bridge is of great significance for bridge seismic safety.In this paper,Maochaojie Bridge with a main span of 368m is taken as an example.A 3-dimensional finite element model of the concrete-filled steel tubular(CFST) bridge is established based on ANSYS and the modal analysis is conducted by using the subspace iteration method. The seismic response and control of long-span CFST arch bridge are investigated.The parametric sensitivity study on seismic control devices including the elastic connection and the viscous dampers are emphasized.Moreover,the control effects of devices installed at different locations are compared with each other.Results show that the longitudinal mode shape makes the greatest contribution to the longitudinal relative displacement between girder and arch ribs;both the elastic connection devices and the dampers can effectively reduce the relative displacement between girder and arch bids;when all of the seismic responses of key sections are considered,using the elastic connection and the dampers together and installing the devices evenly can achieve the optimal control effect.The conclusions can provide references for the seismic design of long-span half-through CFST arch bridges.
引文
[1]陈宝春.钢管混凝土拱桥[M].北京:人民交通出版社,2007.Chen B C.Concrete-filled Steel Tubular Arch Bridge[M].Beijing:China Communication Press,2007.
    [2]Wu Q X,Yoshimura Mistuhiro,Takahashi Kazuo,et al.A concrete filled tubular(CFT)arch bridge[J].Engineering Structures,2006,28(2):163-182.
    [3]Ma J,Chen Y J,Liu L P.Nonlinear seismic responseanalysis of half through CFST arch bridge under 3-Dearthquake waves[J].Key Engineering Materials,2011,30(12):67-76.
    [4]杨孟刚.磁流变阻尼器在大跨度桥梁上的减震理论研究[D].长沙:中南大学,2004.Yang M G.Theoretical research ofMagnetorheological damper on seismic responsereduction of large span bridge[D].Changsha:Central South University,2004.
    [5]王浩,杨玉冬,李爱群,等.土-桩-结构相互作用对大跨度CFST拱桥地震反应的影响[J].东南大学学报,2005,35(3):433-437.Wang H,Yang Y D,Li A Q,et al.Influences ofsoil-pile-structure interaction onseismic response oflong span CFST arch bridge[J].Journal of SoutheastUniversity,2005,35(3):433-437.
    [6]郭磊,李建中,范立础.大跨度连续梁桥减隔震设计研究[J].土木工程学报,2006,39(3):81-85.Guo L,Li J Z,Fan L C.Research on seismicisolation design for long-span continuous bridges[J].China Civil Engineering Journal,2006,39(3):81-85.
    [7]Madhekar S N,Jangid R S.Variable dampers forearthquake protection of benchmark highway bridges[J].Smart Materials and Structures,2009,18(11):1-18.
    [8]叶爱君,胡世德,范立础.超大跨度斜拉桥的地震位移控制[J].土木工程学报,2004,37(12):38-43.Ye A J,Hu S D,Fan L C.Seismic displacementcontrol for super-long-span cable-stayed bridges[J].China Civil Engineering Journal,2004,37(12):38-43.
    [9]王浩,李爱群,郭彤.超大悬索桥地震响应的综合最优控制研究[J].湖南大学学报(自然科学版),2006,33(3):6-10.Wang H,Li A Q,Guo T.Compositive optimalcontrol of the seismic response for super-long-spansuspension bridges[J].Journal of Hunan University(Natural Sciences),2006,33(3):6-10.
    [10]李纲.大跨度钢管混凝土拱桥行波效应及减震分析[D].西安:西安建筑科技大学,2008.Li G.Analysis of the traveling wave effect andvibration reducing of long-span concrete-filled steeltubular arch bridge[D].Xian:Xi′an University ofArchitecture and Technology,2008.
    [11]李正英,李正良.空间地震动输入下大跨度拱桥减震控制研究[J].振动与冲击,2008,27(7):83-87.Li Z Y,Li Z L.Research on seismic response controlof long-span arch bridge under spatially seismicexicitation[J].Journal of Vibration and Shock,2008,27(7):83-87.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心