海底管线周围海床瞬时液化的数值分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地震荷载作用下,海床液化是海底管线失稳的主要原因之一。本文采用Mohr-Coulomb模型和Drucker-Prager模型,基于饱和多孔介质的Biot动力固结方程,进行了有效应力分析;利用大型有限元计算软件ADINA,计算得到了海底管线周围海床土体中的超孔隙水压力及其变化规律,并在此基础上进行了瞬时液化分析。在数值计算的过程中,引入粘弹性人工边界的方法模拟地震波由有限域到无限域的传播,从而更为实际地反映了在地震作用下,海底管线周围土体的动力响应问题。
The seabed liquefaction under seismic loading is one of the main factors governing the overall stability of submarine pipelines.Based on Biot's equations of dynamic consolidation for fully-saturated media, Mohr-Coulomb model and Drucker-Prager model were adopted to analyze the effective stress,and the values and regularity of excess pore water pressure in seabed along submarine pipelines were computed with ADINA,a general-purpose FEM analysis package,to estimate and analyze the momentary liquefactions of the seabed.In the numerical analysis,viscous-elastic artificial boundary was set up in the FEM model to simulate the transmission of seismic waves,which reproduced more realistically the dynamic response of the seabed along submarine pipelines under seismic loading.
引文
[1]Herbich J B.Offshore Pipeline Design Element[M]. New York:Marcel Dekker INC,1981.6-7.
    [2]Sumer B M,Fredsoe J,Christensen S,et al.Sinking /floatation of pipelines and other objects in liquefied soil under waves[J].Coastal Engineering,1999, 38(2):53-90.
    [3]王立忠,潘冬子,夏令.波浪-海床-管线相互作用的模型试验研究[C]//第七届全国土动力学学术会议论文集.北京:[s.n.],2006.301-313. Wang L Z,Pan D Z,Xia L.Model test of waveseabed -pipeline interaction[C]//The 7~(th)National Conference on Soil Dynamics.Beijing:[s.n.],2006.301- 313.
    [4]Jeng D S.Numerical modeling for wave-seabed-pipe interaction in a non-homogeneous porous seabed[J]. Soil Dynamics and Earthquake Engineering,2001, (21):699-712.
    [5]Turcotte B R,Liu P L F,Kulhawy F H.Laboratory evaluation of wave tank parameters for wave-sediment interaction[R].Joseph H.DeFree Hydraulic Laboratory Report 84-1,School of Civil and Environmental Engineering,Cornell University,New York:Cornell University,1984.
    [6]李昕,刘亚坤,周晶,等.海底悬跨管道动力响应的试验研究和数值模拟[J].水利学报,2003,20(2):21- 25. Li X,Liu Y K,Zhou J,et al.Experimental investigation and numerical simulation of dynamic response of free spanning submarine pipelines[J].Journal of Hydraulic Engineering,2003,20(2):21-25.
    [7]邹德高,孔宪京,娄树莲,等.饱和砂土地基中地下管线的振动台试验数值模拟分析[J].水利学报,2004, (12):112-119. Zou DG,Kong X J,Lou S L,et al.Numerical simulation of shaking table test on pipelines buried in saturated sand foundation[J].Journal of Hydraulic Engineering, 2004,(12):112-119.
    [8]栾茂田,张晨明,王栋,等.波浪作用下海床孔隙水压力发展过程与液化的数值分析[J].水利学报,2004, (2):94-100. Luan M T,Zhang C M,Wang D,et al.Numerical analysis of residual pore water pressure development and evaluation of liquefaction potential of seabed under wave loading[J].Journal of Hydraulic Engineering, 2004,(2):94-100.
    [9]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55-64. Liu J B,LüY D.A direct method for analysis of dynamic soil-structure interaction[J].China Civil Engineering Journal,1998,31(3):55-64.
    [10]Lysmer J,Kuhlemeyer R L.Finite dynamic model for infinite media[J].Journal of Engineering Mechanics Division,ASCE,1969,(95):859-877.
    [11]曲鹏,栾茂田,郭莹,等.波浪作用下饱和海床-管线动力相互作用的有限元分析[C]//第七届全国土动力学学术会议论文集.北京:[s.n.],2006.446-453. Qu P,Luan M T,Guo Y,et al.FEM analysis of dynamic response of saturated porous seabed-pipeline interaction system under wave loading[C]//The 7~(th)National Conference on Soil Dynamics.Beijing:[s.n.], 2006.446-453.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心