可液化地层中地铁隧道地震响应数值模拟及其试验验证
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
饱和砂土地层中的地下结构在地震作用下可能因地基液化而发生破坏。采用动力固结两相体有限元程序DIANA SWANDYNE-II对可液化地层中地铁隧道结构的地震响应进行了模拟,并与动力离心模型试验结果对比以验证其效果。选用广义塑性模型Pastor-Zienkiewicz III模拟可液化土的动力特性,基于Biot方程的u–p形式建立有限元方程,进行饱和土动力固结的耦合计算。计算表明,该数值模型可较合理地模拟地下结构的地震反应特性,计算结果与试验现象基本相符。地基液化引起的结构附加内力及隧道上浮主要受地基液化时土水压力变化的影响,截断墙的设置可有效减轻隧道结构的上浮。
Underground structure in saturated sandy soil might be subject to severe damage due to seismic liquefaction.Numerical simulation for earthquake response of subway tunnels in liquefiable soil was conducted by use of finite element program DIANA SWANDYNE-II and the numerical model was verified by some centrifuge test results.A generalized plasticity model,Pastor-Zienkiewicz III,was used to model the dynamic behavior of saturated soil.Finite element procedure based on the u-p form of Biot equations was employed to perform the coupling analysis.It was shown that the numerical model could simulate the earthquake response of subway tunnels in liquefiable soil reasonably.Liquefaction induced ternal force in tunnel segments and its uplift were mainly influenced by the excess pore pressure and the earth pressure increment during earthquakes.Cut-off walls could reduce the uplift of subway tunnels effectively.
引文
[1]佘才高.南京地铁南北线隧道地基的地震液化问题[J].城市轨道交通研究,2001,3:38–42.(SHE Cai-gao.Analysis of ground layer liquefaction in Nanjing North-South Line[J].Urban Mass Transit,2001,3:38–42.(in Chinese))
    [2]CHOU H S,YANG C Y,HSIEH B J,CHANG S S.A study of liquefaction related damages on shield tunnels[J].Tunneling and Underground Space Technology,2001(16):185–193.
    [3]PASTOR M,ZIENKIEWICZ O C,CHAN A H C.Generalized plasticity and the modeling of soil behavior[J].International Journal for Numerical and Analytical Methods in Geomechanics,1990,14:151-190.
    [4]ZIENKIEWICZ O C,CHAN A H C,PASTOR M,SCHREFLER B A,SHIOMI T.Computational geomechanics with special reference to earthquake engineering[M].New York:John Wiley&Sons,1998.
    [5]CHAN A H C.User manual for DIANA SWANDYNE-II[R].Glasgow,University of Glasgow,1989.
    [6]CHAN A H C,FAMIYESIN O O,MUIR W D.Numerical prediction for model No.1[C]//Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems.Rotterdam:A A Balkema,1994:87–108.
    [7]刘华北,宋二祥.可液化土中地铁结构的地震响应[J].岩土力学,2005,26(3):381–386,391.(LIU Hua-bei,SONG Er-xiang.Earthquake induced liquefaction response of subway structure in liquefiable soil[J].Rock and Soil Mechanics,2005,26(3):381–386,391.(in Chinese)
    [8]KATONA M G,ZIENKIEWICZ O C.A unified set of single step algorithms Part 3:The Beta-m method,a generalization of the Newmark scheme[J].International Journal for Numerical Methods in Engineering,1985,21:1345–1359.
    [9]刘光磊,龚成林,宋二祥,刘华北.可液化地层中地铁隧道结构动力离心模型试验[C]//第七届全国土动力学学术会议论文集.北京:清华大学出版社,2006:286–291.(LIU Guang-lei,GONG Cheng-lin,SONG Er-xiang,LIU Hua-bei.Dynamic centrifuge tests on subway tunnel in liquefiable soil//Proceedings of the 7th China Conference on Soil Dynamics.Beijing:Tsinghua University Press,2006:286–291.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心