铅芯橡胶支座隔震铁路简支梁桥双向地震响应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
采用铅芯橡胶支座,选取具有不同固有周期的4座铁路简支梁桥桥墩,建立空间有限元模型。以7组典型地震波作为激励,进行铅芯橡胶支座隔震铁路简支梁桥的双向地震响应分析。采用时程分析法计算考虑和不考虑铅芯橡胶支座恢复力耦合作用的隔震桥墩系统的地震响应。分析结果表明:双向地震动作用下考虑耦合作用的铅芯橡胶支座的位移—恢复力曲线与单向地震作用下不考虑双向恢复力的耦合作用时的位移—恢复力曲线在形状上存在较大差别,铅芯橡胶支座的滞回耗能也不相同;不同地震激励下铅芯橡胶支座恢复力的耦合作用对铅芯橡胶支座峰值位移的影响程度不同;随着桥墩一阶固有周期的增加,铅芯橡胶支座恢复力的耦合作用对一阶振型方向的支座峰值位移的影响程度逐渐增大;梁体的峰值地震响应的规范计算值大都高于实际值,故按照规范值进行铁路简支梁桥的隔震设计偏于安全。
Based on the lead rubber bearing and four piers with different natural periods of railway simple supported beam bridge,the three dimensional FEA models are established.The bidirectional seismic responses analyses of railway simple supported beam bridges isolated by lead rubber bearings are carried out under the excitations of seven pairs of earthquake waves.Using the method of time-history analysis,the seismic responses of isolated bridge pier systems with and without the coupled effect of the restoring forces of the lead rubber bearings are calculated and compared.The analyses results show that the displacement-restoring force hysteretic curves and the hysteretic energy dissipation of the lead rubber bearing under bidirectional ground motions considering the coupled effects are different from those of under unidirectional motions not considering the coupled effects.The coupled effects of the restoring forces on the peak displacements of the lead rubber bearing are different under the excitations of different earthquake waves.The coupled effect on the peak displacement of the lead rubber bearing in the direction of the first mode increases with the increasing of the first natural period of the bridge pier.The peak seismic responses of beams computed based on design codes are almost larger than those of the actual values.The seismic isolation design for the railway simple supported beam bridge according to the results calculated by design codes intends safety.
引文
[1]Hwang J.An Equivalent Linear Model of Lead-Rubber Seismic Isolation Bearings[J].Engineering Structures,1996,18(7):528-536.
    [2]Shen J,TSAI Menghao,CHANG Kuochun,et al.Performance of a Seismically Isolated Bridge under Near-FaultEarthquake Ground Motions[J].Journal of Structural Engineering,2004,130(6):861-868.
    [3]Park K,Jung H,Lee I.A Comparative Study on Aseismic Performance of Base Isolation Systems for Multi-SpanContinuous Bridge[J].Engineering Structures,2002,24:1001-1013.
    [4]朱东生,劳远昌,沈大元,等.隔震桥梁设计参数研究[J].土木工程学报,2000,33(5):53-56.(ZHU Dongsheng,LAO Yuanchang,SHEN Dayuan,et al.Research on Some Design Parameters of Seismically Iso-lated Bridges[J].China Civil Engineering Journal,2000,33(5):53-56.in Chinese)
    [5]李建中,袁万城,范立础.连续桥梁减、隔震体系的优化设计[J].土木工程学报,1998,31(3):47-54.(LI Jianzhong,YUAN Wancheng,FAN Lichu.Optimal Design of Seismic Isolation System for Continuous Bridge[J].China Civil Engineering Journal,1998,31(3):47-54.in Chinese)
    [6]Jangid R.Seismic Response of Isolated Bridge[J].Journal of Bridge Engineering,2004,9(2):156-166.
    [7]吴彬.铅芯橡胶支座的力学性能及其在桥梁工程中的减隔震应用的研究[D].北京:铁道科学研究院,2003.
    [8]American Association of State Highway Officials.Guide Specifications for Seismic Isolation Design[S].Washington(DC):American Association of State Highway Officials,1999.
    [9]王建强,管品武,姚谦峰.铅芯叠层橡胶支座基础隔震结构双向地震反应分析[J].地震工程与工程振动,2005,25(1):133-137.(WANG Jianqiang,GUAN Pinwu,YAO Qianfeng.Analysis of Bilateral Seismic Response of Base-Isolated Struc-tures with Lead Rubber Bearings[J].Earthquake Engineering and Engineering Vibration,2005,25(1):133-137.in Chinese)
    [10]中华人民共和国铁道部.GB50111—2006铁路工程抗震设计规范[S].北京:中国计划出版社,2006.
    [11]中华人民共和国交通部.JTJ004—2005公路桥梁抗震设计规范(报批稿)[Z].2005.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心