地震波的反应谱谱形对RC梁桥结构非线性地震反应的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地震经验表明:各类结构的震害主要表现为强震地面运动的幅值、频谱特性和持时这3个基本要素综合影响的结果。为了将频谱与幅值、持时的影响进行解耦,采用实际地震波和匹配同一反应谱的人工波,通过IDA分析,对一座钢筋混凝土连续梁桥进行研究。对比强震地面运动的频谱特性特别是反应谱谱形与结构地震反应的相关性表明:随着地面运动强度的增加以及桥梁结构非线性程度的提高,谱形对结构非线性地震反应的影响日益显著。如果在纵桥向、横桥向存在高模态影响,则高模态效应与谱形的影响会相互耦合,从而进一步增强对于结构非线性地震反应的影响。对于具有不同动力特性的梁桥结构,反应谱不同区段的谱形对于结构非线性地震反应的影响差异显著,并对影响显著的反应谱区段进行了预计。
Earthquake experience has shown that the comprehensive influence of key characteristics of earthquake ground motions,namely amplitude,frequency content,duration,on all kinds of structures accounted for their failure and destruction in an earthquake.The incremental dynamic analysis of a six span reinforced concrete continuous girder bridge using real accelerograms and spectral matched artificial accelerograms is performed for decoupling the influence between frequency content and duration or amplitude on structural seismic responses.The comparison of correlation between frequency content of earthquake ground motions,especially response spectral shapes and nonlinear seismic responses of RC girder bridge structures reveal that the spectral shape has more and more important influence on nonlinear seismic responses with the increase of ground motion intensity measures and the extent of nonlinearity of bridge structures.If there is a higher modal effect in the longitudinal or transverse direction of bridges,the interaction of the higher modal effect and spectral shape can enhance the influence of frequency content on nonlinear seismic responses of bridge structures.Furthermore,spectral shapes in various parts of response spectra have significantly different effects on nonlinearity of responses of bridge structures of different dynamic properties and key parts of response spectra of remarkable effects on nonlinear seismic responses of RC girder bridge structures are predicted.
引文
[1]Lee T H,Mosalam Khalid M.Probabilistic seismicevaluation of reinforced concrete structural componentsand systems[R].Pacific Earthquake EngineeringResearch Center,University of California,Berkeley,CA,2006/04.
    [2]胡聿贤.地震工程学[M].第2版.北京:地震出版社,2006:150―173.Hu Yuxian.Introduction to earthquake engineering[M].2nd ed.Beijing:Earthquake Publishing House,2006:150―173.(in Chinese)
    [3]李杰,李国强.地震工程学导论[M].第1版.北京:地震出版社,1992:46―74.Li Jie,Li Guoqiang.Introduction to earthquakeengineering[M].1st ed.Beijing:Earthquake PublishingHouse,1992:46―74.(in Chinese)
    [4]PEER.OpenSEES The open system for earthquakeengineering simulation[OL].http://peer.berkeley.edu/products/opensees.html.2008.
    [5]Kent D C,Park R.Flexural members with confinedconcrete[J].Journal of the Structural Division,ASCE,1971,97(7):1969―1990.
    [6]Mander J B,Priestley M J N,Park R.Theoreticalstress-strain model for confined concrete[J].Journal ofthe Structural Division,ASCE,1988,114(8):1804―1826.
    [7]Menegotto M,Pinto P E.Method of analysis forcyclically loaded reinforced concrete plane framesincluding changes in geometry and non-elastic behaviorof elements under combined normal force and bending[C].Proceedings of the IABSE Symposium onResistance and Ultimate Deformability of Structures.Lisbon,1973:15―22.
    [8]范立础,聂利英,李建中.地震作用下板式橡胶支座滑动的动力性能分析[J].中国公路学报,2003,16(4):30―35.Fan Lichu,Nie Liying,Li Jianzhong.Elastic-plastic fiberbeam-column element and its parametric analysis[J].China Journal of Highway and Transport,2003,16(4):30―35.(in Chinese)
    [9]Kunnath S K.Application of the PEER PBEEmethodology to the I-880 viaduct[R].Pacific EarthquakeEngineering Research Center,University of California,Berkeley,2007.
    [10]Kevin M,Bozidar S.Seismic demands ofperformance-based design of bridges[R].PacificEarthquake Engineering Research Center College ofEngineering University of California,Berkeley.PEERReport,2003/08.
    [11]Kevin M,Bozidar S.Seismic demands ofperformance-based design of bridges[R].PacificEarthquake Engineering Research Center College ofEngineering University of California,Berkeley.PEERReport,2003/8.
    [12]Shome N,Cornell C A,Bazzurro P,Carballo J E.Earthquakes,records and nonlinear responses[J].Earthquake Spectral,1998,14(3):469―500.
    [13]University of California,Berkeley.SIMQKE-1[OL].http://nisee.berkeley.edu/elibrary/Software/SIMQKE1ZIP.2008.
    [14]Vamvatsikosa D,Cornell C A.Applied incrementaldynamic analysis[J].Earthquake Spectra,2004,20(2):523―553.
    [15]Vamvatsikosa D,Cornell C A.The incremental dynamicanalysis and its application to performance-basedearthquake engineering[C].Proceedings of the 12thEuropean Conference on Earthquake Engineering.PaperReference 479.2002.
    [16]American Society of Civil Engineers.ASCE standard:Minimum design loads for buildings and other structures[S].American Society of Civil Engineers,SEI/ASCE7-02,Reston,VA.2002.
    [17]Kennedy R P,Short S A,Mertz K L,Tokarz F Z,Idriss IM,Power M S,Sadigh K.Engineering characterizationof ground motion–task I:Effects of characteristics offree-field motion on structural response[R].NUREG/CR-3805,U.S.nuclear regulatory commission,Washington,D.C.,1984.
    [18]UBC,Structural engineering design provisions[S].Uniform Building Code,Vol.2;International Conferenceof Building Officials,1997.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心