主溜井冲击损伤机制分析及实测验证
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为准确判断溜井受矿石冲击的损伤情况,基于影响溜井的损伤因素,构建了溜井受矿石冲击的损伤理论模型,并据此运用MATLAB计算获得矿石对溜井冲击的冲量分布。采用MADIS-FLAC3D数据耦合技术建立溜井冲击损伤数值模型,揭示了溜井冲击损伤的分布规律。综合运用空区激光探测系统(CMS)和大型矿床三维软件SURPAC,实现了对溜井垮塌三维信息的准确获取及可视化,并对所建立模型的计算分析结果进行了验证。结果表明:(1)根据溜井冲击损伤模型计算得到溜井受冲击的范围标高为-265.83~-292.28 m,冲量在此区间呈现先增大后减小的规律,在标高为-272.88 m处达到最大,为13.52k N·S;(2)通过数值模型分析得到溜井受矿石冲击一侧在标高为-264.12~-294.88 m区间段发生了位移变化,并在相应区间段形成一定范围的塑性区,说明矿石冲击破坏了此处溜井围岩的稳定性;(3)数值分析得出的最大位移监测值出现的位置与探测模型垮塌区域的最大断面标高一致,实际探测获得的溜井垮塌最严重区域形态与数值模拟确定的塑性区相吻合。
To accurately estimate the damage of chute under ore impact,a theoretical model is developed for describing the damage of the chute considering the influential factors of chute damage.The impulse distributions induced by ore impact on chute are obtained with MATLAB.Based on the MADIS-FLAC3 D data coupling technique,a numerical model of chute is developed and used to analyze the distribution of chute damage.Combining the capacity monitoring system(CMS) and the 3D software SURPAC,the 3D information relating to chute collapse has been effectively determined and visualized,and the proposed procedure is validated.It is shown that(1) the range of impact calculated with the proposed model is at the elevations from-265.83 m to-292.28 m;and in this zone,the impact momentum increases firstly,then decreases,and reaches its peak value 13.52×103 N·S at the elevation-272.88 m;(2) the displacement occurs in the zone from the elevations-264.12 m to-294.88 m under the ore impact,where a plastic zone is formed,indicating that the stability of surrounding rock in this section has been degraded;(3) the location of the maximum measured displacement is close to the position of the maximum cross-section of collapse area from the monitored results.The shape of the most serious collapse area of chute from monitoring agrees with the plastic zone determined by the numerical analysis.
引文
[1]明世祥.地下金属矿山主溜井变形破坏机制分析[J].金属矿山,2004(1):5-8.MING Shi-xiang.Analysis of deformation destruction mechanism of main pass in underground metal mines[J].Metal Mines,2004,(1):5-8.
    [2]宋卫东,王洪永,王欣,等.采区溜井卸矿冲击载荷作用的理论分析与验证[J].岩土力学,2011,32(2):326-332.SONG Wei-dong,WANG Hong-yong,WANG Xin,et al.Theoretical analysis and test of impact load due to ore dumping in chute[J].Rock and Soil Mechanics,2011,32(2):326-332.
    [3]周建华,周根明.主溜井垮塌分析与研究[J].有色矿山,2001,30(1):9-13.ZHOU Jian-hua,ZHOU Gen-ming.Analysis and study of main chute falling[J].Nonferrous Mines,2001,30(1):9-13.
    [4]吴爱祥,孙业志,刘湘平.散体动力学理论及其应用[M].北京:冶金工业出版社,2002:21-24.
    [5]侯明勋,葛修润.岩体初始地应力场分析方法研究[J].岩土力学,2007,28(8):1626-1630.HOU Ming-xun,GE Xiu-run.Study on fitting analysis of initial stress field in rock masses[J].Rock and Soil Mechanics,2007,28(8):1626-1630.
    [6]孙礼健,朱元清.初始地应力场分析方法的研究[J].地震地磁观测与研究,2008,29(3):14-21.SUN Li-jian,ZHU Yuan-qing.The research progress on numerical analysis method of initial geostress[J].Seismological and Geomagnetic Observation and Research,2008,29(3):14-21.
    [7]胡国忠,王宏图,范晓刚,等.急倾斜俯伪斜上保护层保护范围的三维数值模拟[J].岩石力学与工程学报,2009,28(增刊):2845-2852.HU Guo-zhong,WANG Hong-tu,FAN Xiao-gang,et al.Three-dimensional numerical simulation for protection scope of steep inclined upper-protective layer of pitching oblique mining[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(Supp.):2845-2852.
    [8]杨泽,侯克鹏,李克钢,等.云锡大屯锡矿岩体力学参数的确定[J].岩土力学,2010,31(6):1923-1928.YANG Ze,HOU Ke-peng,LI Ke-gang,et al.Determination of mechanical parameters of rock mass from Yunxi Datun Tin Mine[J].Rock and Soil Mechanics,2010,31(6):1923-1928.
    [9]李庶林,杨念哥.凡口铅锌矿深部矿床地应力测试[J].矿业研究与开发,2003,23(4):15-17.LI Shu-lin,YANG Nian-ge.Strata stress measurement for the deep orebody in Fankou lead-zinc mine[J].Mining Research and Development,2003,23(4):15-17.
    [10]朱栗宝.冲击荷载作用下采场底部结构损伤机制研究及应用[D].长沙:中南大学,2011:60-72.
    [11]赵文,梁磊,张锋春,等.冲击荷载作用下混凝土的受力分析[J].东北大学学报(自然科学版),2008,29(5):738-741.ZHAO Wen,LIANG Lei,ZHANG Feng-chun,et al.Stress analysis of concrete under impact loading[J].Journal of Northeastern University(Natural Science),2008,29(5):738-741.
    [12]葛修润,蒋宇,卢允德,等.周期性荷载作用下岩石疲劳变形试验研究[J].岩石力学与工程学报,2003,22(10):1581-1585.GE Xiu-run,JIANG Yu,LU Yun-de,et al.Testing study on fatigue deformation law of rock under cyclic loading[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(10):1581-1585.
    [13]林大能,陈寿如.循环冲击荷载作用下岩石损伤规律的试验研究[J].岩石力学与工程学报,2005,24(22):4094-4098.LIN Da-neng,CHEN Shou-ru.Experimental study on damage evolution law of rock under cyclical impact loadings[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(22):4094-4098.
    [14]罗忆,李新平,徐鹏程,等.考虑累积损伤效应的围岩变形特性研究[J].岩土力学,2014,35(11):3041-3048.LUO Yi,LI Xin-ping,XU Peng-cheng,et al.Characteristic study of surrounding rock mass deformation considering accumulative damage effect[J].Rock and Soil Mechanics,2014,35(11):3041-3048.
    [15]BADR A,ASHRAF A F,PLATTEN A K.Statistical variations in impact resistance of polypropylene fibre-reinforced concrete[J].International of Journal of Impact Engineering,2006,32(11):1907-1920.
    [16]高文学,刘运通.冲击载荷作用下岩石损伤的能量耗散[J].岩石力学与工程学报,2003,22(11):1777-1780.GAO Wen-xue,LIU Yun-tong.Energy dissipation of rock damage under impact loading[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1777-1780.
    [17]Gemcom Software International Inc.Surpac vision software user manual[M].Beijing:Surpac Software International Inc.,2004.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心