空腔结构吸声器的吸声系数计算方法的研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
探讨计算空腔结构吸声器吸声系数的方法。以粘弹体能量守恒方程为基础导出吸声器各层媒质的表达式,用声波在分层吸收媒质中传播模型计算能量吸收系数。用所导出的等效密度、弹性模量表达式和文献1[声学学报,1965;2(4):192-197]、文献2[同济大学学报, 1979(1):96-104]所给的等效参数,分别计算了尖劈吸声器和空腔结构的尖劈吸声器的吸声系数,比较表明对于前者三种方法都有效,对于后者本文的结果与实测吸声系数曲线较符合,另两文与实验相差较大;又用本方法分别计算了平板吸声器含空腔及空腔结构变化时的吸声系数,所得结果合理地反映了空腔结构对吸声性能的影响;对原空腔结构吸声器的吸声系数模拟结果作了实验验证,表明计算值和测量结果基本相符。结果表明用本文所给等效参量表达式和声波在分层吸收媒质中传播模型,近似计算空腔结构吸声器的吸声系数是可行的。
An approximately calculating method for an absorption coefficient of sound absorber with cavity was studied. The energy conservation equation in viscous-elastic material, relations expressions between effective densities, elasticity modules of the every layers and the relevant quantities of the compounds of that layer were deduced. By using a model of sound propagation in absorb medium layers the energy absorption coefficient were obtained. The spectra of absorption coefficients of wedge-shaped sound-absorber were calculated using the relative expressions and in references 1 [Acta Acustica, 1965; 2(4): 192-197] and 2 [Journal of Tongji University, 1979(1): 96-104]. The calculated results shows that the three methods are effective for wedge-shaped sound-absorber; but for the wedge-shaped sound-absorber with cavities, the calculated results by the method put forward is closest to the experimental results among the three methods. As an example, the absorption coefficients of the plat sound-absorber with cavities were calculated. The simulated results can express the affection on absorption performance when the configuration of a cavity is changed, and are proved by experiments. An effective method which calculates absorption coefficients of sound-absorber with cavities is given.
引文
1尚尔昌.渐变吸收层反射率的近似式.声学学报, 1965;2(4) :192-197
    2赵松龄.劈形吸声结构的研究.同济大学学报,1979(1) :96-104
    3何祚镛,王曼.水下非均匀复合层结构吸声的理论研究.应用声学,1996;15(5) :12-19
    4王仁乾,马黎黎,缪旭弘.带空腔尖劈吸声器吸声性能的研究.声学技术,1999(4) :146-148
    5 Backman J, Peltonen T, H.MOller. Improved anechoic chamber absorbents. 17th International Congress on Acoustics, Rome, 2001
    6朱维庆.水声共振式吸声材料吸声机理.声学学报,1981;3(2) :114-117
    7 llinskii Y A, Bart Lipkens, Zaboloskaya E A, Energy Losses in an acoustical resonator. J. Acoust. Soc. Am., 2001; 109(5) : 1859-1870
    8 Anne-Christine, Hladky-Hennion, Jean-Noel. Decarpigny, Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: Application to Alberich anechoic cotings. J. Acoust. Soc. Am., 1991; 90(7) : 3356-3367
    9 Anne-Christine, Hladky-Hennion, Jean-Noel Decarpigny. Note on the validity of using plane-wave type relations to characterize Alberich anechoic coatings. J. Acoust. Soc. Am., 1992; 92(5) : 2878-2882
    10谭红波,赵洪,徐海亭.有限元法分析空腔周期分布粘弹性层的声特性.声学学报, 2003;28(3) :277-282
    11郭自强编著.固体中的波.地震出版社, 1982:268-269
    12缪荣兴,宫继祥编著.水声无源材料技术概要.浙江:浙江大学出版社, 1995
    13王荣津等编著.水声材料手册.北京:科学出版社, 1983

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心