用户名: 密码: 验证码:
杉木N、P代谢对模拟土壤增温及隔离降雨的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of simulated soil warming and precipitation exclusion on N and P metabolisms in Cunninghamia lanceolate
  • 作者:方璇 ; 王健 ; 王彬 ; 朱锦 ; 杨智杰 ; 熊德成 ; 杨玉盛 ; 陈光水 ; 陈龙龙 ; 林婉玉
  • 英文作者:FANG Xuan;WANG Jian;WANG Bin;ZHU Jinmao;YANG Zhijie;XIONG Decheng;YANG Yusheng;CHEN Guangshui;CHEN Longlong;LIN Wanyu;College of Biological Science,Fujian Normal University;Fujian Provincial Key Laboratory for Plant Eco-physiology,Fujian Normal University;College of Geographical Sciences, Fujian Normal University;
  • 关键词:土壤增温 ; 隔离降雨 ; 杉木 ; 生态化学计量学特征 ; 氮磷吸收率
  • 英文关键词:soil warming;;precipitation exclusion;;Cunninghamia lanceolata;;ecological stoichiometry;;nitrogen and phosphorus resorption efficiency
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建师范大学生命科学学院;福建师范大学福建省植物生理生态重点实验室;福建师范大学地理科学学院;
  • 出版日期:2019-03-08 16:16
  • 出版单位:生态学报
  • 年:2019
  • 期:10
  • 基金:“973”项目(2014CB954003);; 国家自然科学基金项目(31200460,31270659);; 福建省自然科学基金项目(2016J01142)
  • 语种:中文;
  • 页:130-140
  • 页数:11
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S791.27
摘要
全球气候变化改变了陆地生态系统植物的生理状态,使植物氮(N)、磷(P)代谢发生了变化。为揭示全球气候变暖及干旱环境下植物N、P代谢特征的变化,以典型的亚热带植物杉木(Cunninghamia lanceolata)为研究对象,按照两因素两水平试验设计设置对照、增温(+5℃)、隔离降雨(-50%)和增温×隔离降雨4个处理,根据"主干法"确定针叶龄级,采集一年生、二年生、三年生及四年生叶片,同时收集每个处理的凋落叶,分别测定鲜叶及凋落叶的生态化学计量学特征,并计算其N、P吸收率。结果表明:(1)增温及隔离降雨对凋落叶N浓度及C/N比值均无显著影响,隔离降雨使凋落叶P浓度显著增加23.32%,C/P比值显著下降18.57%(P<0.05)。(2)增温、增温×隔离降雨处理使杉木二年生鲜叶N浓度较对照组均有显著差异(P<0.05),三、四年生叶片N浓度在隔离降雨处理下分别极显著增加18.15%和25.33%(P<0.01),增温及隔离降雨使P浓度均呈下降趋势但未造成显著差异。(3)N吸收率(NRE)在处理间及叶龄间均无显著差异;P吸收率(PRE)随叶龄增加呈下降趋势,其中仅隔离降雨处理下不同叶龄杉木叶PRE未有显著差异。(4)增温、隔离降雨及二者交互作用均增加鲜叶N浓度及NRE之间拟合关系,其中增温及增温×隔离降雨拟合度呈显著相关(P<0.05),而增温、隔离降雨及二者共同作用均显著降低鲜叶P浓度及PRE的拟合关系(P<0.05),其中隔离降雨处理对其影响最大。在中亚热带地区,杉木生长受P元素限制显著,土壤温度和水分都是叶片P素变化的重要因素,而杉木叶片N素对水分较为敏感,适当的水分亏缺能使叶片的N浓度增加,尤其对成熟叶片影响显著。
        Global climate change has altered the physiological status of plants in terrestrial ecosystems, causing significant changes in nitrogen(N) and phosphorus(P) metabolisms in plants. The objective was to investigate the responses of N and P metabolisms in a typical subtropical tree, Cunninghamia lanceolata, to simulated warming and drought. The experiment was completely randomized and fully crossed factorial design with five replicates. The treatments were control(CK), soil warming(+5°C, W), precipitation exclusion(-50%, Pe), and interactions of warming and precipitation exclusion(WP). Leaves at difference ages, including senesced-leaf, were collected to determine ecological stoichiometric characteristics and nutrients resorption efficiency. The W and Pe had no effects on N concentration and C/N ratio in the senesced-leaves. However, the Pe increased P concentration by 23.32% but reduced C/P ratio by 18.57% in the senesced-leaves(P<0.05). In the biennial leaves, N concentration in W and WP treatments were different(P<0.05) from the control. The N concentration in the three-and four-year-old leaves in the Pe treatment increased by 18.15% and 25.33%, respectively(P<0.01) when compared to that of the control. No difference was found in N resorption efficiency(NRE) between the treatments and years. However, P resorption efficiency(PRE) decreased with increasing leaf age in all treatments, except for the Pe. The treatment of W, Pe, and WP improved the fitting relationship between N concentration and NRE, and it was significant in the W and WP treatments(P<0.05). However, the fitting relationship between P concentration and PRE was lower in the W, Pe, and WP treatments(P<0.05) than in the control with highest negative effect found in the Pe treatment. In subtropical regions, the growth of C. lanceolata is significantly limited by P. Soil temperature and water content are both important factors regulating P metabolism in leaves, while leaf N is more sensitive to changes in soil water and water deficits can increase its concentration, especially affecting mature leaves.
引文
[1] IPCC.Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge,UK:Cambridge University Press,2013.
    [2] Dore M H I.Climate change and changes in global precipitation patterns:what do we know?Environment International,2005,31(8):1167- 1181.
    [3] Huang B B,Yan D H,Wang H,Cheng B F,Cui X H.Effects of water quality of the basin caused by nitrogen loss from soil in drought.Natural Hazards,2015,75(3):2357- 2368.
    [4] Zhang X B,Wan H,Zwiers F W,Hegerl G C,Min S K.Attributing intensification of precipitation extremes to human influence.Geophysical Research Letters,2013,40(19):5252- 5257.
    [5] Schindlbacher A,Zechmeister-Boltenstern S,Jandl R.Carbon losses due to soil warming:do autotrophic and heterotrophic soil respiration respond equally?Global Change Biology,2009,15(4):901- 913.
    [6] Li P,Han W X,Zhang C,Tian D,Xu X N,Fang J Y.Nutrient resorption of Castanopsis eyrei varies at the defoliation peaks in spring and autumn in a subtropical forest,Anhui,China.Ecological Research,2015,30(1):111- 118.
    [7] Zeng Y L,Fang X,Xiang W H,Deng X W,Peng C H.Stoichiometric and nutrient resorption characteristics of dominant tree species in subtropical Chinese forests.Ecology and Evolution,2017,7(24):11033- 11043.
    [8] Mo Q F,Zou B,Li Y W,Chen Y,Zhang W X,Mao R,Ding Y Z,Wang J,Lu X K,Li X B,Tang J W,Li Z A,Wang F M.Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest.Scientific Reports,2015,5:14605.
    [9] Güsewell S.N:P ratios in terrestrial plants:variation and functional significance.New Phytologist,2004,164(2):243- 266.
    [10] Dijkstra F A,Pendall E,Morgan J A,Blumenthal D M,Carrillo Y,LeCain D R,Follett R F,Williams D G.Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland.New Phytologist,2012,196(3):807- 815.
    [11] Bai E,Li S L,Xu W H,Li W,Dai W W,Jiang P.A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics.New Phytologist,2013,199(2):441- 451.
    [12] Eckstein R L,Karlsson P S,Weih M.Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions.New Phytologist,1999,143(1):177- 189.
    [13] Reich P B,Oleksyn J.Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America,2004,101(30):11001- 11006.
    [14] 江肖洁,胡艳玲,韩建秋,周玉梅.增温对苔原土壤和典型植物叶片碳、氮、磷化学计量学特征的影响.植物生态学报,2014,38(9):941- 948.
    [15] Cunningham S,Read J.Comparison of temperate and tropical rainforest tree species:photosynthetic responses to growth temperature.Oecologia,2002,133(2):112- 119.
    [16] Xu S,Zhou G Y,Tang X L,Wang W T,Wang G X,Ma K P,Han S J,Du S,Li S G,Yan J H,Ma Y X.Different spatial patterns of nitrogen and phosphorus resorption efficiencies in China′s forests.Scientific Reports,2017,7(1):10584.
    [17] Yuan Z Y,Chen H Y H.A global analysis of fine root production as affected by soil nitrogen and phosphorus.Proceedings of the Royal Society B:Biological Sciences,2012,279(1743):3796- 3802.
    [18] Vergutz L,Manzoni S,Porporato A,Novais R F,Jackson R B.Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants.Ecological Monographs,2012,82(2):205- 220.
    [19] Chen G S,Yang Y S,Robinson D.Allocation of gross primary production in forest ecosystems:allometric constraints and environmental responses.New Phytologist,2013,200(4):1176- 1186.
    [20] 雷海迪,尹云锋,刘岩,万晓华,马红亮,高人,杨玉盛.杉木凋落物及其生物炭对土壤微生物群落结构的影响.土壤学报,2016,53(3):790- 799.
    [21] 兰斯安,杜虎,曾馥平,宋同清,彭晚霞,韩畅,陈莉,苏樑.不同林龄杉木人工林碳储量及其分配格局.应用生态学报,2016,27(4):1125- 1134.
    [22] 冯建新,熊德成,史顺增,许辰森,钟波元,邓飞,陈云玉,陈光水,杨玉盛.土壤增温对杉木幼苗细根生理生态性质的影响.生态学报,2017,37(1):35- 43.
    [23] 唐偲頔,郭剑芬,张政,蔡小真,杨玉盛.增温和隔离降雨对杉木幼林土壤养分和微生物生物量的影响.亚热带资源与环境学报,2017,12(1):40- 45.
    [24] Kobe R K,Lepczyk C A,Iyer M.Resorption efficiency decreases with increasing green leaf nutrients in a global data set.Ecology,2005,86(10):2780- 2792.
    [25] Huang J J,Wang X H,Yan E R.Leaf nutrient concentration,nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China.Forest Ecology and Management,2007,239(1/3):150- 158.
    [26] Paudel E,Dossa G G O,Xu J C,Harrison R D.Litterfall and nutrient return along a disturbance gradient in a tropical montane forest.Forest Ecology and Management,2015,353:97- 106.
    [27] 葛晓改,曾立雄,黄志霖,肖文发,谭本旺,周本智.土壤温度和水分含量对三峡库区马尾松林凋落物叶分解的影响.林业科学,2013,49(9):153- 157.
    [28] Melillo J M,Butler S,Johnson J,Mohan J,Steudler P,Lux H,Burrows E,Bowles F,Smith R,Scott L,Vario C,Hill T,Burton A,Zhou Y M,Tang J.Soil warming,carbon-nitrogen interactions,and forest carbon budgets.Proceedings of the National Academy of Sciences of the United States of America,2011,108(23):9508- 9512.
    [29] Cai Z Q,Bongers F.Contrasting nitrogen and phosphorus resorption efficiencies in trees and lianas from a tropical montane rain forest in Xishuangbanna,south-west China.Journal of Tropical Ecology,2007,23(1):115- 118.
    [30] Killingbeck K T.Nutrients in Senesced Leaves:Keys to the Search for Potential Resorption and Resorption Proficiency.Ecology,1996,77(6):1716- 1727.
    [31] 刘超,王洋,王楠,王根轩.陆地生态系统植被氮磷化学计量研究进展.植物生态学报,2012,36(11):1205- 1216.
    [32] Kaarlej?rvi E,Baxter R,Hofgaard A,Hytteborn H,Khitun O,Molau U,Sj?gersten S,Wookey P,Olofsson J.Effects of warming on shrub abundance and chemistry drive ecosystem-level changes in a forest-tundra ecotone.Ecosystems,2012,15(8):1219- 1233.
    [33] 彭阿辉,王根绪,杨阳,肖瑶,张莉,杨燕.青藏高原高寒草甸两种优势植物的生长及其CNP化学计量特征对模拟增温的响应.生态学报,2017,37(12):4118- 4127.
    [34] 洪江涛,吴建波,王小丹.全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响.应用生态学报,2013,24(9):2658- 2665.
    [35] Rivas-Ubach A,Sardans J,Pérez-Trujillo M,Estiarte M,Peňuelas J.Strong relationship between elemental stoichiometry and metabolome in plants.Proceedings of the National Academy of Sciences of the United States of America,2012,109(11):4181- 4186.
    [36] Sardans J,Rivas-Ubach A,Peňuelas J.The C:N:P stoichiometry of organisms and ecosystems in a changing world:a review and perspectives.Perspectives in Plant Ecology,Evolution and Systematics,2012,14(1):33- 47.
    [37] Yang X,Tang Z Y,Ji C J,Liu H Y,Ma W H,Mohhamot A,Shi Z Y,Sun W,Wang T,Wang X P,Wu X,Yu S L,Yue M,Zheng C Y.Scaling of nitrogen and phosphorus across plant organs in shrubland biomes across northern China.Scientific Reports,2014,4:5448.
    [38] Wright I J,Reich P B,Westoby M.Strategy shifts in leaf physiology,structure and nutrient content between species of high-and low-rainfall and high-and low-nutrient habitats.Functional Ecology,2001,15(4):423- 434.
    [39] 郭子武,陈双林,杨清平,李迎春.密度对四季竹叶片C、N、P化学计量和养分重吸收特征的影响.应用生态学报,2013,24(4):893- 899.
    [40] 刘万德,苏建荣,李帅锋,张志钧,李忠文.云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征.生态学报,2010,30(23):6581- 6590.
    [41] See C R,Yanai R D,Fisk M C,Vadeboncoeur M A,Quintero B A,Fahey T J.Soil nitrogen affects phosphorus recycling:foliar resorption and plant-soil feedbacks in a northern hardwood forest.Ecology,2015,96(9):2488- 2498.
    [42] Zhang J,Yao Y C,Streeter J G,Ferree D C.Influence of soil drought stress on photosynthesis,carbohydrates and the nitrogen and phophorus absorb in different section of leaves and stem of Fugi/M.9EML,a young apple seedling.African Journal of Biotechnology,2010,9(33):5320- 5325.
    [43] Zhang L X,Bai Y F,Han X G.Application of N:P stoichiometry to ecology studies.Acta Botanica Sinica,2003,45(9):1009- 1018.
    [44] An Y,Wan S Q,Zhou X H,Subedar A A,Wallace L L,Luo Y Q.Plant nitrogen concentration,use efficiency,and contents in a tallgrass prairie ecosystem under experimental warming.Global Change Biology,2010,11(10):1733- 1744.
    [45] Aerts R,Cornelissen J H C,van Logtestijn R S P,Callaghan T V.Climate change has only a minor impact on nutrient resorption parameters in a high-latitude peatland.Oecologia,2007,151(1):132- 139.
    [46] 李元恒,韩国栋,王珍,王正文,赵萌莉,王萨仁娜.增温和氮素添加降低荒漠草原多年生植物氮素回收效率.生态学报,2015,35(18):5948- 5956.
    [47] Sardans J,Penuelas J,Ogaya R.Drought-induced changes in C and N stoichiometry in a Quercus ilex Mediterranean forest.Forest Science,2008,54(5):513- 522.
    [48] Boerner R E J.Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility.Journal of Applied Ecology,1984,21(3):1029- 1040.
    [49] Yan T,Zhu J J,Yang K.Leaf nitrogen and phosphorus resorption of woody species in response to climatic conditions and soil nutrients:a meta-analysis.Journal of Forestry Research,2018,29(4):905- 913.
    [50] Brant,Amber N,and H Y H Chen."Interspecific responses in tree foliar nutrient resorption following fire and logging along a chronosequence in a central Canadian boreal forest." ESA Convention 2014.
    [51] Suseela V,Tharayil N,Xing B S,Dukes J S.Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra.Global Change Biology,2015,21(11):4177- 4195.
    [52] He H H,Bleby T M,Veneklaas E J,Lambers H.Dinitrogen-fixing Acacia species from phosphorus-impoverished soils resorb leaf phosphorus efficiently.Plant,Cell & Environment,2011,34(12):2060- 2070.
    [53] Elser J J,Bracken M E S,Cleland E E,Gruner D S,Harpole W S,Hillebrand H,Ngai J T,Seabloom E W,Shurin J B,Smith J E.Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater,marine and terrestrial ecosystems.Ecology Letters,2007,10(12):1134- 1142.
    [54] Huang J Y,Yu H L,Wang B,Li L H,Xiao G J,Yuan Z Y.Nutrient resorption based on different estimations of five perennial herbaceous species from the grassland in inner Mongolia,China.Journal of Arid Environments,2012,76:1- 8.
    [55] Kuzyakov Y,Xu X L.Competition between roots and microorganisms for nitrogen:mechanisms and ecological relevance.New Phytologist,2013,198(3):656- 669.
    [56] Gallardo A,Covelo F.Spatial pattern and scale of leaf N and P concentration in a Quercus robur population.Plant and Soil,2005,273(1/2):269- 277.
    [57] Zong N,Shi P L,Chai X.Effects of warming and nitrogen addition on nutrient resorption efficiency in an alpine meadow on the northern Tibetan Plateau.Soil Science and Plant Nutrition,2018,64(4):482- 490.
    [58] Chen F S,Niklas K J,Liu Y,Fang X M,Wan S Z,Wang H M.Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age.Tree Physiology,2015,35(10):1106- 1117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700