1.0GPa、高温下岩石熔融玻璃的弹性波速测量及其地球物理意义
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
利用超声波反射法,在1.0GPa、最高温度分别达900℃和730℃条件下,测量了岩石成分从酸性到基性的7种熔融玻璃的纵波波速(vp)和横波波速(vs)随温度的变化。实验过程证明,高压下升温过程中样品被压缩导致了样品中弹性波走时减少,而降温过程中样品长度基本保持不变。结果显示,1.0GPa下,随实验温度升高,不同成分玻璃的vp首先以-0.2×10-3km.s-1.℃-1到-0.7×10-3km.s-1.℃-1不等的速率缓慢降低,而其vs多以-0.1×10-3km.s-1.℃-1速率随温度升高而降低。当温度高于玻璃转变温度(Tg)后,玻璃的vp开始以-0.8×10-3km.s-1.℃-1到-3.6×10-3km.s-1.℃-1不等的速率快速下降。根据玻璃vp随温度变化速率的改变,拟合出这几种玻璃的转变温度从584℃到654℃。由实验获得的玻璃波速,利用Voigt-Reuss-Hill(VRH)平均计算出下地壳岩石中玻璃的存在将降低岩石的波速,并由此为下地壳低速层提出一种新的解释,即非晶质体的存在可能在下地壳形成地震波低速层。
At 1.0GPa, compressional and shear wave velocities (vp and vs) of seven types of glass are measured as functions of temperature up to 900 ℃ and 730 ℃, respectively. Experimental runs indicated that, with elevating temperature under high pressure, the compression of glass is responsible for the decrease of travel time in the sample and the glasses show little change in height during cooling process. When the temperatures are lower than the glass transition temperatures (Tg), it is found that the temperature derivatives of velocities of the glasses are between -0.2×10-3 km·s-1·℃-1 and -0.7×10-3 km·s-1·℃-1 for vp and almost -0.1×10-3 km·s-1·℃-1 for vs, respectively. At higher temperature (T>Tg), vp of the glasses decrease quickly with temperature derivatives between -0.8×10-3 km·s-1·℃-1 and -3.6×10-3 km·s-1·℃-1. According to the change in temperature derivatives of vp, the glass transition temperatures are determined to be between 584 ℃ and 654 ℃. Using the Voigt-Reuss-Hill(VRH)average method, it is calculated that the wave velocities of the lower crustal rocks decrease with increase in glass content. Because of this, we suggest that the low velocity layer in lower crust is a function of the glass contents in rocks, which results in the decrease in the wave velocity of rocks in lower crust.
引文
[1]Xie Hongsen.An introduction to material science in the Earth s interior[M].Beijing:Science Press,1997:194-214(in Chinese).
    [2]Daniel R,Neuville,Bjorn O M.Role of aluminiuminthe sili-cate network:in situ high-temperature study of glasses and melts on the join Si O2-NaAl O2[J].Geochi mica et Cosmo-chi mica Acta,1996,60(10):1727-1737.
    [3]Bjorn M.Haploadndesitic melts at magmatic temperatures:in situ,high-temperature structure and properties of melts a-long thejoin K2Si4O9-K2(KAl)4O9to1236℃at at mospher-ic pressure[J].Geochi mica et Cosmochi mica Acta,1996,60(19):3665-3685.
    [4]Pan Y C,Christensen NI,Batiza R,et al.Velocities of a natural mid-ocean ridge basalt glass[J].Tectonophysics,1998,290:171-180.
    [5]Meister R,Robertson E C,Were R W,et al.Elastic moduli of rock glasses under pressure to8kilobars and geophysical i mplications[J].Journal of Geophysical Research,1980,85(B11):6461-6470.
    [6]Xu J A,Manghnani M H.Brillouin-scattering studies of a so-diumsilicate glass in solid and melt conditions at temperature up to1000℃[J].Physical Review B,1992,45:640-645.
    [7]Xu J A,Manghnani M H,Richet P.Brillouin-scattering studies of K2Si4O9glass and melt upto1000℃[J].Physical Review B,1992,46:9213-9215.
    [8]Askarpour V,Manghnani M H,Richet P.Elastic properties of diopside,anorthite,and grossular glasses and liquids:a Brillouin scattering study up to1400K[J].Journal of Geo-physical Research,1993,98(B10):17683-17689.
    [9]Matsushi ma S.Compressional and shear wave velocities of ig-neous rocks and volcanic glasses to900℃and20kbar[J].Tectonophysics,1981,75:257-271.
    [10]Jiang X,Zhou WG,Liu C Q,et al.Compressional and shear wave velocities of rock glasses up to2.0GPa and1000℃[J].Journal of Physics:Conference Series(in press).
    [11]Jiang X,Zhou WG,Xie HS,et al.High-pressing prepara-tions for rock glasses andtheir elastic properties[J].Chinese Journal of Geochemistry,2007(in press).
    [12]Xie HS,Zhang Y M,Xu H G.Anewof method of elastic-wave velocities in minerals and rocks at high-temperature and high-pressure and its significance[J].Science in China:Se-ries B,1993,36(10):1276-1280.
    [13]Liu Y G,Xie HS,Zhou W G,et al.A method for experi-mental determination of compressional velocities in rocks and,minerals at high pressure and high temperature[J].Journal of Physics:Condensed Matter,2002,14:1-5.
    [14]Matsushi ma S.Partial melting of rocks observed by the sound velocity method and the possibility of a quasi-drylowvelocity zoneinthe upper mantle[J].Physics of the Earth and Plane-tary Interior,1989,55:306-312.
    [15]Zang Shaoxian,Liu Yonggang,Ning Jieyuan.Thermal structure of thelithospherein north China[J].Chinese Jour-nal of Geophysics,2002,45(1):56-66(in Chinese).
    [16]Kern H,Gao S,Liu Q.Seismic properties and densities of middle andlower crustal rocks exposed alongthe North China Geoscience Transect[J].Earth and Planetary Science Let-ters,1996,139:439-455.
    [17]Bina C R,Helffrick G R.Calculation of elastic properties fromthermodynamic equation of state principles[J].Annual Review Earth and Planetary Sciences,1992,20:527-552.
    [18]Gao Wenxue,Ma Jin.Seismo-geological background and earthquake hazardin Beijing Area[M].Beijing:Seismologi-cal Press,1993:1-452(in Chinese).
    [19]Gu Zhijuan,Pan Yusheng,Zhou Yong,et al.The physics properties of crustal low velocity layer in Qinghai-Xizang Plateau[J].Bulletin of Mineralogy,Petrology and Geochem-istry,2000,19:30-33(in Chinese).
    [20]Yang Zhuen,Wu Zongxu.Tectonic thickening by ductile shearing:a mode of low velocity and high conductivity layer in curst[M]∥Annual Chinese Geophysics Society.Beijing:Seismological Press,1994(in Chinese).
    [21]Zandt G,Velasco A A,Beck S.Composition andthickness of the southern Altiplano crust,Bolivia[J].Geology,1994,22:1003-1006.
    [22]Gu Zhijuan,Guo Caihua,Li Biao,et al.Study on origin of crustal low velocity and high conductivity layer[J].Science in China:Series B,1995,25(1):108-112(in Chinese).
    [23]Zhao Zhidan,Gao Shan,Luo Tingchuan,et al.Origin of crustal low velocity layer of Qinling and north China:evi-dence from laboratory measurement of P-wave velocity in rocks at highpTcondition[J].Chinese Journal of Geophys-ics,1996,39(5):642-652(in Chinese).
    [24]Aizawa Y,Ito K,Tatsumi Y.Compressional wave velocity of granite and amphibolite up to melting temperatures at1GPa[J].Tectonophysics,2002,351:255-261.
    [25]Christensen N I,Mooney W D.Seismic velocity structure and composition of the continental crust:a global view[J].Journal of Geophysical Research,1995,100(B7):9761-9788.
    [26]Liu Jianmin,Dong Shuwen.Advance and the status quo of the research on pseudotachylites[J].Geological Review,2001,47(1):64-69(in Chinese).
    [27]Lu Long,Ouyang Kegui,Fu Heqin,et al.Atype of peculiar glassy rock[J].Bulletin of Mineralogy,Petrology and Geo-chemistry,2006,25(3):288-290(in Chinese).
    [28]Cong Bolin.Magmatic activity and igneous rock association[M].Beijing:Geological Publishing House,1979:1-324(in Chinese).
    [1]谢鸿森.地球深部物质科学导论[M].北京:科学出版社,1997:194-214.
    [15]臧绍先,刘永刚,宁杰远.华北地区岩石圈热结构的研究[J].地球物理学报,2002,45(1):56-66.
    [18]高文学,马瑾.首都圈地震地质环境与地震灾害[M].北京:地震出版社,1993:1-452.
    [19]顾芷娟,潘裕生,周勇,等.青藏高原地壳低速层的物理性质[J].矿物岩石地球化学通报,2000,19:30-33.
    [20]杨主恩,吴宗絮.构造化的韧性剪切增厚———壳内低速高导层的成因模式[M]∥中国地球物理学会年刊.北京:地震出版社,1994.
    [22]顾芷娟,郭才华,李彪,等.壳内低速高导层成因初步探讨[J].中国科学:B辑,1995,25(1):108-112.
    [23]赵志丹,高山,骆庭川,等.秦岭和华北地区地壳低速层的成因探讨———岩石高温高压波速实验证据[J].地球物理学报,1996,39(5):642-652.
    [26]刘建民,董树文.假玄武岩玻璃的研究进展与现状[J].地质论评,2001,47(1):64-69.
    [27]卢龙,欧阳克贵,符鹤琴,等.一种罕见的玻璃质岩石[J].矿物岩石地球化学通报,2006,25(3):288-290.
    [28]从柏林.岩浆活动与火成岩组合[M].北京:地质出版社,1979:1-324.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心