硫酸盐侵蚀水泥砂浆动弹性模量的超声检测
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
用普通硅酸盐水泥,分别配制了水灰比在0.4~0.8范围内的水泥砂浆试件进行硫酸盐加速侵蚀实验。运用超声波技术测定了不同浓度硫酸盐侵蚀下不同水灰比水泥砂浆试件的动弹性模量值,分析了此实验条件下试件动弹性模量随侵蚀时间变化的规律,并对实验结果作了简要的机理分析。结果表明:在硫酸盐侵蚀条件下,水泥砂浆试件的动弹性模量随侵蚀时间首先增大至某一峰值,随后迅速降低或者逐渐缓慢降低。水灰比和硫酸根浓度对动弹性模量的影响只是反映在数值上;硫酸盐对水泥砂浆材料的侵蚀是由表及里的,动弹性模量的演化可以来反映试件整体平均强度的变化,而回弹法测定的抗压强度反映的是试件表面强度的变化。比较而言,动弹性模量的演化在时间上存在着滞后性。试件微观分析及宏观形貌表明:硫酸盐侵蚀条件下,砂浆试件动弹性模量的演化主要是膨胀产物钙矾石等的形成引起砂浆内部微观结构变化的缘故。
The accelerated sulphate erosion test for common portland cement mortar specimen prepared with water cement ratio from 0.4 to 0.8 was carried out, and the dynamic modulus variation of the specimen to the erosion time was determined by ultrasonic checking method. The correspondence of dynamic modulus with erosion time was analyzed. Experiment results show that the dynamic modulus of cement mortar in sulphate erosion increases to a peak with the increase of erosion time and then decreases rapidly or gradually,and effects of water cement ratio and sulfate concentration on the dynamic modulus are obvious numerically. Cement mortar in sulfate is eroded from surface to inside. The evolvement of dynamic modulus shows the average strength change of the specimen, while the compressive strength measured by rebound method shows the surface strength change of the mortar. There is a hysteresis phenomenon for evolvement of dynamic modulus comparing to the compressive strength by rebound method. The results of micro-analyses and macroscopic morphology indicate that the evolvement of dynamic modulus depends on the micro-structural change of mortar because of the formation of expanded products (ettringite etc.) in sulfate erosion.
引文
[1] 刘卫东,张东芹,王依民.混凝土结构抗冻性超声检测方法的研究[J].水利学报,2003(3):125—127.LIUWeidong,ZHANGDongqin,WANGYimin.JHydraulicEng(inChinese),2003(3):125—127.
    [2] AKHRASNM.Detectingfreezingandthawingdamageinconcreteusingsignalenergy[J].CemConcrRes,1998,28(9):1275—1280.
    [3] 岳 丹,王 菊.混凝土框架梁内部缺陷的超声波检测及分析[J].东北煤炭技术,1999(4):25—27.YUEDan,WANGJu.CoalTechnolNortheastChina(inChinese),1999(4):25—27.
    [4] 林维正,苏 勇,洪有根.混凝土裂缝深度超声波检测方法[J\〗.无损检测,2001,23(8):323—326.LINWeizheng,SUYong,HONGYougen.NondestructiveTest(inChinese),2001,23(8):323—326.
    [5] 刘志存.混凝土路面厚度的超声波无损检测研究[J].宝鸡文理学院学报(自然科学版),2003,23(2):135—138.LIUZhicun.JBaojiCollArtsSci(NaturalScience,inChinese),2003,23(2):135—138.
    [6] 林维正,袁益镛,洪有根,等.水泥混凝土路面质量的超声波无损检测[J].无损检测,1997,19(5):121—127.LIUWeizheng,YUANYiyong,HONGYougen,etal.NondestructiveTest(inChinese),1997,19(5):121—127.
    [7] 刘红桂,南金生,马建军,等.用超声波无损检测技术检测混凝土的厚度[J].地震学刊,1998(1):56—60.LIUHonggui,NANJinsheng,MAJianjun,etal.JSeismology(inChinese),1998(1):56—60.
    [8] 申爱琴,徐江萍.超声波法测定路用无机非金属材料力学性能的分析研究[J].西安公路交通大学学报,1998(3):8—12.SHENAiqin,XUJiangping.JXi′anHighwayUniv(inChinese),1998,18(3):8—12.
    [9] 李俊如,黄理兴,李海波.利用超声波确定敦煌莫高窟洞壁力学特性[J].辽宁工程技术大学学报(自然科学版),2001,20(4):460—462.LIJunru,HUANGLixing,LIHaibo.JLiaoningTechUniv(NaturalScience),(inChinese),2001,20(4):460—462.
    [10] 缪 群,李为杜.高强混凝土强度的无损检测技术研究[J].混凝土,1998,(6):28—30.MIUQun,LIWeidu.Concrete(inChinese),1998(6):28—30.
    [11] YEIHW,HUANGR.Detectingofthecorrosiondamageinreinforcedconcretemembersbyultrasonictesting[J].CemConcrRes,1998,28(7):1071—1082.
    [12] 白新德,彭德全,耿怀之.混凝土中钢筋腐蚀速率的现场无损检测技术[J].材料保护,2002,35(8):17—19.BAIXinde,PENGDequan,GENHuaizhi.MaterProtection(inChinese),2002,35(8):17—19.
    [13] 杨鼎宜,陈建康,徐 敏,等.淮河入海水道工程抗侵蚀混凝土的研究[J].混凝土与水泥制品,2003(1):15—18.YANDDingyi,CHENJiankang,XUMin,etal.ChinaConcrCemProd(inChinese),2003(1):15—18.
    [14] 余红发,孙 伟,王春甲,等.盐湖地区混凝土的长期腐蚀产物及腐蚀机理[J].硅酸盐学报,2003,31(5):434—440.YUHongfa,SUNWei,WANGChunjia.JChinCeramSoc(inChinese),2003,31(5):434—440.
    [15] 吴新璇,邱 平.混凝土无损检测技术手册[M].北京:人民交通出版社,2003.67—68.WUXinxuan,QIUPing.TheTechnicalManualofNondestructiveEvaluationonConcrete(inChinese).Beijing:People'sTrafficPress,2003.67—68.
    [16] 邱 平,张荣成.新编混凝土无损检测技术[M].北京:中国环境科学出版社,2002.102—103.QIUPing,ZHANGRongcheng.TheTechnologyofNondestructiveEvaluationonConcrete(inChinese).Beijing:ChinaEnvironmentSciencePress,2002.102—103.
    [17] 郝恩海,刘 杰.混凝土超声声速与强度和弹性模量的关系研究[J].天津大学学报,2002,35(3):380—382.HAOEnhai,LIUJie.JTianjinUniv(inChinese),2002,35(3):380—382.
    [18] 梅泰PK.混凝土的结构、性能与材料[M].上海:同济大学出版社,1991.94—15.MEHTAPK.ConcreteStructure,PropertiesandMaterials(inChinese).Shanghai:JTongjiUniv,1991.94—95.
    [19] 李FM .水泥和混凝土化学[M].北京:中国建筑工业出版社,1980.430—431.LEAFM .TheChemistryofCementandConcrete(inChinese).Bei jing:ChinaArchitectureIndustryPress,1980.430—431.
    [20] SANTHANAMM ,COHONMD ,OLEKJ.Sulfateattractresearch[J].CemConcrRes,2001,31:845—851.
    [21] SCHNEIDERU ,CHENSW .抗化学侵蚀特性及抗热特性[A].见:WITTMANNFH ,SCHWESINGERP编.高性能混凝土材料特性与设计[M ].第1版.北京:中国铁道出版社,1998.91—82.SCHNEIDERU ,CHENSW .In:WITTMANNFH ,SCHWESINGERPeds.HighPerformanceConcreteMaterialProper tiesandDesign(inChinese).Beijing:ChinaRailwayPress,1998.91—92.
    [22] SANTHANAMM ,COHENMD ,OLEKJ.Effectsofgypsumforma tionontheperformanceofcementmortars[J].CemConcrRes,2003,33:325—332.
    [23] 张 丽.混凝土硫酸盐侵蚀机理及影响因素[J].东北公路,1998,(4):40—41.ZHANGLi.NortheastHighway(inChinese),1998(4):40—41.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心