千岛岛弧大震前哈佛大学矩心矩张量(CMT)解一致性的预测意义
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
千岛岛弧地区属于全球地震活动最为活跃的地区之一. 本文利用哈佛大学测定的千岛岛弧地区地震的矩心矩张量(CMT)解, 分析该地区震源机制的一致性特征, 提出利用震源机制和构造应力场的一致性参数a进行地震预测的思路. 研究结果表明, MW≥7.5 地震之前,都有一致性参数a降低的现象, a的低值起始的时间在发生大震之前的10 多天至110 多天,a的低值截止的日期距大震在30多天至2 天. 相互之间虽然并不完全一致, 但是差别不大.这种现象的稳定性, 尚需时间的检验, 但是设想在长达数百公里的地区, 连续发生MW≥5.3的地震的震源机制都与构造应力场一致, 应当不是随机的现象, 而是一种具有预测意义的现象. 当积累的震例足够多时, 则有可能确定统一的评判标准和预测准则.
The Central Moment Tensor (CMT) solution obtained by Harvard University for the earthquakes in Kurile Islands area is used in the paper to analyze the consistent focal mechanism in the area, and the idea to make earthquake prediction based on the consistent parameter a of focal mechanism and stress field is proposed. The results obtained from the study indicate that before the M W≥7.5 earthquakes, the consistent parameter a decreases, which starts from 10~110 days or so and ends from about 30~2 days before the great earthquakes. Although the phenomenon is not totally the same for individual earthquakes, the difference between them is not large. Certainly, the phenomenon should be tested by time, but it is not random, because the phenomenon of consistent focal mechanism and stress field for the M W≥5.3 earthquake appears successively in an area of several hundreds kilometers in length. It should be a phenomenon of predictive significance. When the accumulated earthquake examples are sufficient, uniform judgment criteria and prediction principles can be stipulated then.
引文
陈颙.1978.用震源机制一致性作为描述地震活动性的新参数[J].地球物理学报,19(2):142~159
    陈颙,李丽.2003.地震科学的几个发展趋势[J].国际地震动态,(1):2~5
    刁桂苓,于新昌.1980.唐山地震前后京、津、唐、张地区的综合断层面解[J].西北地震学报,2(3):39~47
    刁桂苓,于新昌.1982.海坨山地震前综合断层面解矛盾比的变化[J].地震,(5):16~17
    刁桂苓,于利民,李钦祖.1994.强震前后震源区应力场变化一例[J].地震学报,16(2):64~69
    刁桂苓,王勤彩,傅容珊,等.2001.1982年日本茨城地震序列表现出的局部板块俯冲动态工程[J].地震学报,23(2):136~142
    吴忠良,黄静,张东宁,等.2003.地震矩张量元素Mrr的空间分布与中国大陆岩石层地块[J].地震地质,25(1):33~38
    许忠淮.2001.东亚地区现今构造应力图的编制[J].地震学报,23(5):492~501
    CrampinS,EvansR,AtkinsonB K.1984.Earthquake predictionAnew physical basis[J].GeophysJ R astrSoc,76:147~156
    CrampinS.1978.Seismic wave propagation through a cracked solid: polarization as a possible dilatancy diagno, stic[J].GeophysJ R astrSoc,53:467~496
    KaganY Y.2000.Temporal correlations of earthquake focal mechanisms[J].GeophysJ Int,143(3):881~897
    KaganY Y.1997.Seismic moment frequency relation for shallow earthquakes:Regional comparison[J].J GeophysRes,102(2):2835~2852
    KaganY Y,JacksonD D.1994.Long term probabilistic forecasting of earthquakes[J].J GeophysRes,99(13):13685~13700
    KaganY Y,JacksonD D.1995.New seismic gap hypothesis:Five years after[J].J GeophysRes,100(3):3943~3959
    KaganY Y,JecksonD D.1999.Worldwide doublets of large shallow earthquakes[J].BullSeismSocAmer,89:1147~1155
    KawakatsuH.1991.Enigma of earthquake at rideg transform fault plate boundaries distribution of non double couple pa rameter ofHarvardCMT solutions[J].GeophysResLett,18:1103~1106
    MazzottiS,PichonX L,HenryP.2000.Full interseismic locking of theNankai andJapan westKurile subduction zones:An analysis of uniform elastic strain accumulation inJapan constrained by permanentGPS[J].J GeophysRes,105(b6):13159~13177
    ScholzC H.1990.TheMechanics ofEarthquakes andFaulting[M].NewYork:CambridegUniversityPress,187~189
    TanimotoT,OkamotoT.2000.Change of crustal potentian energy by earthquakes:An indicator for extensional andcompressional tectonics[J].GeophysResLett,27:2313~2316
    TanimotoT,OkamotoT,TerraF.2002.Tectonic signatures in coseismic gravitational energy change[J].GeophysJInt,149(2):490~498

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心