应用低频信号提高高速玄武岩下的成像质量(英文)
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对高速玄武岩屏蔽层下深层成像困难的实际问题,采用波动方程波场数值模拟技术,根据玄武岩地层的特点,设计三个相应的简单高速玄武岩模型,通过对深层反射地震信号能量的分析,说明了低频地震信号既具有较强的穿透薄高速玄武岩屏蔽层的能力,也具有减弱因粗糙表面所产生的绕射噪音的能力。一个完整的2D玄武岩模型的模拟试验证明了利用低频信号可以提高高速玄武岩屏蔽层下深层成像的质量,实际资料的低通滤波处理也取得了预期的效果。
Wave equation wave field numerical modeling technology is applied to the observation that deep layer imaging is difficult below a screening layer of high-velocity basalt. Three simple high-velocity basalt models are designed on the basis of basalt formation characteristics. The analysis of deep-layer reflection seismic signal energy shows that low- frequency seismic signals are capable of both penetrating the thin high-velocity basalt layer and reducing the diffraction noise caused by the rough surfaces. The simulation experiment of a complete 2D basalt model confirms that the low-frequency signals can be used to boost the quality of deep-layer imaging under the high-velocity basalt layer and achieve good results in low-pass filter processing of actual data.
引文
Criss, C. J., Kiger, C., Maxwell, P., and Musser, J., 2005, Full-wave seismic acquisition and processing: the onshore requirement: First Break, 23, 53-61.
    Dong Guoliang, 2005, Seismic wave conveyingnumerical modeling under complicated geologicalconditions: Progress in Exploration Geophysics, 28 (3),187-194.
    Hu Zhongping, Guan Luping, and Gu Lianxing WuDali, Dong Yourui, and Zhao Qun, 2004, Wide-angleseismic wave field analysis and imaging method underhigh-velocity screening layer: Chinese Journal ofGeophysics, 47(1), 88-94.
    Martini, F., and Christopher, J. B., 2002, Application ofpre-stack wave equation datuming to remove interfacescattering in sub-basalt imaging: First Break, 20 (6)395-403.
    Moshe Reshef, Haim, and Zvi Ben-Avraham, 2003A case study of sub-basalt imaging in land regioncovered with basalt flows: Geophysical Prospecting51(3), 247-260.
    Planke, S., Alvestad, E., and Eldholm, O., 1999, Seismicharacteristic of basalt extrusive and intrusive rocksThe Leading Edge, 18(3), 342-248.
    Purnell, G. W., 1992, Imaging beneath a high-velocitylayer using converted waves: Geophysics, 57(11),1444-1452.
    Robert, R.S., Gaiser, J. E., Brown, R.J., and Lawton, D. C., 2003, Converted-wave seismic exploration: Applications: Geophysics, 68(1), 40-57.
    She Deping, 2004a, Progress in study of wave field numerical modeling technology, in Zhang Yonggang Ed., New progress in oil and gas geophysical technology: Petroleum Industrial Press (Beijing), 104-111.
    She Deping, 2004b, Wave field numerical technology: Progress in Exploration Geophysics, 27(1), 16-21.
    She Deping, Wu Weimin, and Li Pei, 2006a, Application and study of low-frequency signals for deep-layer imaging in basalt area: Journal of Hehai University (Natural Science Version), 34(1), 83-87.
    She Deping, Wu Weimin, and Li, Pei, 2006b, Use of low-frequency to improve imaging quality in gypsum region: Geophysical Prospecting for Petroleum, 45 (3), 234 - 238.
    Ziolkowski, A., Hanssen, P., Gatliff, R., Jakubowicz, H., Dobson, A., Hampson, G., Li, X., and Liu, E., 2003, Use of low frequencies for sub-basalt imaging: Geophysical Prospecting, 51(3), 169-182.
    Zhu Yongwang and Wei Xiucheng, 2006, Implicit algorithm of wave equation numerical modeling: Geophysical Prospecting for Petroleum, 45(2), 151-156.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心