假玄武玻璃的研究进展与现状
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
在国外有关假玄武玻璃(Pseudotachylite)的研究已经有百余年的历史,在野外产状、显微镜观察和实验模拟等多方面积累了丰富的资料。而国内在这方面的研究甚少。近年来,随着人们对“活断层”研究的深入,所谓有“地震化石”之称的假玄武玻璃也日益为研究者们所重视。假玄武玻璃通常被认为是与地震断层有关的高应变速率条件下的产物。假玄武玻璃的研究对了解地震时地下深处断层带的变形机制等多方面具有重要意义。尤其是通过模拟假玄武玻璃形成时的相似条件(主要是力学机制和化学机制),可以了解假玄武玻璃形成时断层剪切带变形历史。为了使国内对这一研究领域感兴趣的学者了解假玄武玻璃的形成过程及其所反映的意义,本文从假玄武玻璃的地质特征及成因等几个方面进行了总结,以飨读者。
Pseudotachylites have been recognized for over a century. However many problems concerning their formation remain in dispute. Pseudotachylites are traditionally interpreted as an indicator of high-velocity slip O10 cm/s) and hence the earthquake activity (Spray), the presence of pseudotachylites can not only be indicative of meteorite impacts, but also be used to infer the past deformation history and behavior of a fault zone or fault shear zone, especially the deformation mechanism of a fault zone in the deep crust while an earthquake occurs. In recent years, pseudotachylites, which are widely known as earthquake faulting fossils, have been paid great attention to by the researchers with the deepened researches on "active faults". Pseudotachylites can be discovered in different depths of the crust and can be divided into five types (under a microscope) according to micro-lites in the matrix. There are two contrasted kinds of pseudotachylites in the crust, one having been formed by frictional fusing of rocks in a fault zone and the other by extreme mylonitization of the rocks and injection of the finely pulverized material into fractures (Philpotts, 1964). The bulk compositions of pseudotachylites and their wall rocks show that they are generated chiefly by the preferential selective melting of minerals of the lowest melting points in the wall rocks. The latest experiment (Spray, 1995) shows that comminution is a prerequisite to frictional melting. Depending on the velocity-shear stress - displacement relations prevailing during the frictional slip, the rocks produced in seismogenic zones can be dominated by comminuted wall rocks or fragments-melt mixes (pseudotachylites).
引文
孙岩,徐士进,刘德良,林爱明,陆建军.1998. 断裂构造地球化学导论.北京:科学出版社,183~209.
    王玉芳,郑亚东,王新利.1995. 中蒙边境地区特大型推覆构造带中的断层泥分析.北京大学学报(自然科学版),31(1) :115~128.
    Akito T. 1999. Size distribution of clasts in experimentany produced pseudotachylites. Journal of Structural Geology, 21: 305~312.
    Allen A R. 1979. Mechanism of frictional fusion in fault zones. J.Struct. Geol., 1: 231~244.
    Camacho A, Vernon R H, Gerald J D F. 1995. Large volumes of anhydrous pseudotachylyte in the Woodroffe Thrust, eastern Musgrave Ranges, Australia. Journal of Structural Geology, 17 (3) :371~383.
    Clough C T. 1888. The geology of the Cheviot Hills: England and Wales. Geol. Surv. Mem., Sheet 108 NE. 22.
    Clough C T, Maufe H B, Bailey E B. 1909. The cauldron-subsidence of Glen Coe, and the associated igneous phenomena. Geol. Soc. London Quart. Jour., 65: 611~673.
    Ermanovics I F, Helmstaed H, Plant A G. 1972. An occurrence of Archean pseudotachylite from Southeastern Manitoba. Can. J. Earth Sci., 9: 257~265.
    Hobbs B E, Ord A, Teyssier C. 1986. Earthquakes in the ductile regime? Pure and Applied Geophysics, 124: 309~336.
    Holland T H. 1900, The charnockite series, a group of Archean hypersthenic rocks in peninsular India. India Geol. Survey Mem., 28 (2) : 119~249.
    Kennedy L A,Spray J G. 1992. Frictional melting of sedimenyary rock during high-speed diamond drilling: an analytical SEM and TEM investigation. Tectonophysics, 204: 323~337.
    Killick A M. 1990. Pseudotachylite generated as a result of a drilling"Burn-in". Tectonophysics, 171: 221~227.
    Lin A. 1994a. Microlite morphology and chemistry in pseudotachylite from the Fuyun fault zone, China. The Journal of Geology, 102:317~329.
    Lin A. 1994b. Glassy pseudotachylyte veins from the Fuyun fault zone, northwest China. Journal of Structural Geology, 16 (1) : 71~83.
    Lin A. 1996. Injection veins of crushing-originated pseudotachylyte and fault gouge formed during seismic faulting. Engineering Geology (An International Journal), 43: 213~224.
    Lin A. 1998. Selective melting processes as inferred from experimentally generated pseudotachylyte. Journal of Structural Geology, 16 (5~6) : 533~545.
    Lin A. 1999. Roundness of clasts in pseudotachylytes and cataclastic rocks as an indicator of frictional melting. Journal of Structural Geology, 21: 473~478.
    Maddock R H. 1983. Melt origin of fault-generated pseudotachylytes demonstrated by texture. Geology, 11: 105~108.
    Magloughlin J F. 1989. The nature and significance of pseudotachylite
    from the Nason terrane, North Cascade Mountains, Washington.Journal of Structural Geology, 11 (7) : 907~917.
    Magloughlin J F, Spray J G. 1992. Frictional melting processes and products in geological materials: introduction and discussion.Tectonophysics, 204: 197~206.
    Martini J E J. 1992. The metamorphic history of the Vredefort dome at approximately 2 Ga as revealed by coesite-stishovite-bearing pseudotachylites. Journal of Metamorphic Geology, 10: 517~527.
    Masch L, Wenk H R, Preuss E. 1985. Electron microscopy study of hyalomylonites-evidence for frictional melting in Lindslides.Tectonophysics, 115: 131~160.
    McKenzie D, Brune J N. 1972. Melting on fault planes during large earthquakes. Royal Astronomical Society Geophysical Journal,29: 65~78.
    Park R G. 1961. The pseudoyachylite of the Gairloch district, RossShire, Scotland. American Journal of Science, 259: 542~550.
    Passchier C W. 1982. Pseudotachylite and the development of ultramylonite bands in the Saint--Barthelemy Massif, French Pyrenees. Journal of Structural Geology, 4: 69~79.
    Philpotts A R. 1964. Origin of Pseudotachylites. American Journal of Science, 262: 1008~1035.
    Reynolds D L. 1954. Fluidization as a geological process, and its bearing on the problem of intrusive granites. Am. Jour. Sci., 252:577~613.
    Scott J S, Drever H I. 1953. Frictional fusion along a Himalayan thrust. Proc. R. Soc., 65: 121~142.
    Shand S J. 1916. The pseudotachylyte of Parijs (Orange Free State).And its relation to "trap-shotten gneiss" and "flinty crush-rock".Geological Society of London Quarterly Journal, 14: 999~1006.
    Shimamoto T,Nagaharna H. 1992. An argument against a crush origin for pseudotachylytes based on the analysis of clast-size distribution. Journal of Structural Geology, 14: 999~1006.
    Sibson R H. 1975. Generation of pseudotachylite by ancient seismic faulting. Royal Astronomical Society Geophysical Journal, 43: 775~794.
    Sibson R H. 1980a. Power dissipation and stress levels on faults in the upper crust. Journal of Geophysical Research, 85: 6239~6247.
    Sibson R H. 1980b. Transient discontinuities in ductile shear zones.Jour. of Structural Geology, 2: 165~171.
    Spray J G. 1987. Artificial generation of pseudutachylyte using friction welding apparatus: Simulation of melting on a fauh plane. Journal of Structural Geology, 9: 49~60.
    Spray J G. 1988. Generation and crystallization of an amphibolite shear melt: an investigation using radial friction melting apparatus. Conrib. Mineral. Petrol., 99:464~475.
    Spray J G. 1992. A physical basis for the frictional melting of some rock-forming minerals. Tectonophysics, 204: 205~221.
    Spray J G. 1995. Pseudotachylyte controversy:Fact or friction? Geology, 23(12) :1119~1122.
    Sun Yan, Xu Shijun, Liu Deliang, Lin Aiming, Lu Jianjun. 1998. An introduction to tectonogeochemisty in fault zones. Beijing: Science Press, 183~209 (in Chinese).
    Toyoshima T. 1990. Pseudotachylyte from the main zone of the Hidaka metamorphic belt, Hokkaido, northern Japan. Journal of Metamorphic Geology, 8: 507~523.
    Wang Yufang, Zheng Yadong, Wang Xinli. 1995. Analysis of gouges in the Sino-Mongolian boundary thrust. Acta Scientiarum Naturalium, Universitatis Pekinensis, 31 (1) : 115~128 (in Chinese with English abstract).
    Weiss L E, Wenk H R. 1983. Experimentally produced pseudotachylite-like veins in gabbro. Tectonophysics, 96: 299~310.
    Wenk H R. 1978. Are pseudotachalites preducts of fracture or fusion?Geology, 6: 507~511.
    Wenk H R, Weiss L E. 1982. Al-rich pyroxene in pseudotachylite: an indicator of high pressure and high temperature? Tectonophysics,84: 329~341.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心