铅芯橡胶支座在三塔无背索斜拉桥中的应用研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
某无背索三拱塔斜拉桥跨径组合为30m+60m+70m+80m+40m=280m,中间三个大跨为拱塔斜拉结构,采用拱梁固结、梁墩分离的结构形式,全桥为五跨连续梁体系,斜拉索承担部分桥面恒载和活载,属于部分斜拉桥,约束方式分为普通盆式橡胶支座和铅芯橡胶支座两种.地震反应谱计算结果表明采用普通盆式橡胶支座时,E1概率水平下,桥墩基本都处于弹性状态,E2概率水平下,大部分桥墩都进入了屈服阶段.若把主墩改为铅芯橡胶支座,通过延长结构纵横向振动周期,则既能减小地震内力,又能适当控制上部结构的墩、梁间水平位移,在E1、E2地震作用下各桥墩、桩基础均处于弹性范围,满足规范要求.最后进行了模拟支座非线性特性的时程分析,通过与反应谱法结果相比较,验证计算结果的可靠性.
The span makeup of a three-pylon cable-stayed bridge without back stay is 30 meters plus 60 meters plus 70 meters plus 80 meters plus 40meters,which adds up to 280meters in total.The three middle spans are arch pylon cable-stayed bridge.The structural form is pylon-girder fixed and girder-pier separated.The whole bridge is a five span continuous beam system.Partial dead load and live load are carried by stay cables.So the bridge belongs to partial cable-stayed bridge.The constraints include two types,namely pot rubber bearing support and lead rubber bearing support.The calculation results by response spectra analysis show that the bridge primarily stays in elastic condition under the seismic load of E1 level,while most of piers of main bridge come into yielding stage during E2 level earthquake.If lead rubber bearings are used in piers of main bridge,all piers stay in elastic condition under both E1 and E2 level earthquake through elongating structural vibration period,internal seismic force is reduced and the relative displacement between superstructure and the pier is controlled,which makes the design fulfilling the requirement of specifications.Finally the time-history analysis was carried out with nonlinear bearing supports and the results were verified valid through comparing with response spectra calculation results.
引文
[1]JTG/TG2-01-2008.公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.
    [2]JTG/TD65-1-2007.公路斜拉桥设计细则[S].北京:人民交通出版社,2007.
    [3]茅兆祥,张文学.鱼嘴长江大桥设计方案抗震性能研究[J].国防交通工程与技术,2005,(4):51-54.MAO Zhao-xiang,ZHANG Wen-xue.Study of the anti-earthquake design of the Yangtse River Bridge at Yuzui[J].Traffic Engineering and Technology for National Defence,2005,(4):51-54.
    [4]谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2006.
    [5]布占宇,谢旭,苟昌焕.拉索局部振动对斜拉桥地震响应的影响研究[J].工程力学,2006,23(9):157-166.BU Zhan-yu,XIE Xu,KOU Chang-huan.Effects of lo-cal cable vibration on the seismic response of cable-stayed bridges[J].Engineering Mechanics,2006,23(9):157-166.
    [6]张庆,宋馨,林英,等.吴江学院路斜拉桥抗震分析[J].交通科技,2010,(10):16-18.ZHANG Qing,SONG Xin,LIN Ying,et al.Seismic response analysis of Xueyuan Road cable-stayed brige in Wujiang[J].Transportation Science&Technology,2010,(10):16-18.
    [7]彭凯,李建中,彭天波.主塔基础形式对超大跨斜拉桥抗震性能的影响[J].重庆交通大学学报(自然科学版),2008,27(5):665-671.PENG Kai,LI Jian-zhong,PENG Tian-bo.Influence of under-pylon foundation forms on seismic performance of super-span cable-stayed bridges[J].Journal of Chongqing Jiaotong University(Natural Science),2008,27(5):665-671.
    [8]陈兴冲,虞庐松,吴高峰,等.兰州市小西湖部分斜拉桥抗震分析[J].兰州铁道学院学报,2003,22(3):42-44.CHEN Xing-chong,YU Lu-song,WU Gao-feng,et al.Seismic analysis of xiaoxihu partial cable-stayed bridge in Lanzhou[J].Journal of Lanzhou Railway University,,():
    [9]包立新,李小珍,卫星,等.宜宾长江公路大桥斜拉桥抗震性能评价[J].工程力学,2008,25(2):174-182.BAO Li-xin,LI Xiao-zhen,WEI Xing,et al.Evaluation of seismic resistance capacity for Yibin Yangtze River cable-stayed bridge[J].Engineering Mechanics,2008,25(2):174-182.
    [10]余建星,王新岐.挡块对斜拉桥抗震性能的影响[J].地震工程与工程振动,2002,22(4):114-119.YU Jian-xing,WANG Xin-qi.Influence of block on anti-seismic behavior of cable-stayed bridge[J].Earth-quake Engineering and Engineering Vibtration,2002,22(4):114-119.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心